

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DUSYS
Departement
Umweltsystemwissenschaften

Optimization of dairy cattle breeding programs using genomic selection

Sabrina Bütler

Master thesis, 2014

Content

- Background
- Objective of the master thesis
- Evaluation criteria
- Method
- Total Merit Index
- 6. Results
- Conclusion

Background (1)

- New breeding strategies by using GEBV
- Earlier selection decision by higher accuracy of the GEBV
- Model calculations have shown, that genomic selection has an influence on **breeding progress** and **genetic gain** (Schaeffer, 2006)
- A. I. Organizations only buy bull calves with GEBV
- A. I. Organizations distribute semen from selected bulls which do not have yet second crop daughters (Optimis)

Background (2) - Number of genotyped animals in Switzerland

Background (3) – Breeding program Braunvieh 2013

2. Objective of the master thesis: Effect of variation of five parameters on the breeding program:

3. Evaluation criteria

- **Genetic gain (GG)** (only breeding unit)
 - <u>Natural</u>: Average superiority of the progeny of selected animals compared to previous population (natural units per year)
 - Monetary: natural genetic gain expressed in monetary units (Swiss Francs per year)

$$GG /T = \frac{i * r * \sigma_a}{GI}$$

i: Selection intensity r: Accuracy of breeding values

 $\sigma_{\!\scriptscriptstyle a}$: additive genetic standard deviation

GI: Generation interval

• Breeding profit (breeding and production unit)

Breeding profit = Breeding return – Breeding costs

• Return: monetary genetic gain over the whole investment period, discounted return per cow Costs: fixed or variable

4. Method

- The computer program ZPLAN (Karras, 1974), Version "z10.for" (Willam et al., 2008) was used
- ZPLAN optimizes selection strategies based on a deterministic approach
- Core parts of the software are gene flow method (Hill, 1974) and selection index contstruction (Hazel et al., 1949)
- 14 Selection groups were defined
- Cost and biological parameters have to be defined for each selection group
- Inclusion of genomic information by calculating daughter equivalents based on heritability

5. Total Merit Index

• Index

- Heritabilities and genetic correlations are considered between all traits in the total merit index
- Weighting of traits according to total merit index of Braunvieh Schweiz

Trait	Weight
Production	54%
Milk kg	13%
Protein kg	33%
Protein %	8%
Fitness	30%
Persistency	3%
Length of productive life	10%
Somatic cell count	8%
NRR	6%
Days to first service	3%
Milking speed	6%
Conformation	10%

6. Results (1): Proportion of young bulls

Proportion of herd book cows and bull dams inseminated with young bulls

6. Results (2): Proportion selected to genotyped bull calves

6. Results (3): Calving age of bull dams

6. Results (4): Genotyping of all bull dams *

Cows with or without genotyping at different cost levels

7. Conclusion

- Increased annual monetary genetic gain and discounted profit by
 - Increased proportion of young bull inseminations
 - Increased number of genotyped bull calves
 - younger calving age of bull dams
- Higher risk by using young bulls, as bulls with GBVs have lower accuracies as proven bulls
- Intensity of the use of genotyped young bulls in practice depends on the
 - Acceptance of the GBVs
 - Accuracy of the GBVs

Questions?

Sources

- Braunvieh Schweiz. (2012a). Gesamtzuchtwert.
- Cunningham, E.P. (1973). The discounted gene flow method. *Ausschuss für genet. stat. Methoden der DGfZ*.
- Hazel, L.N. (1943). The genetic basis for constructing selection indexes. *Genetics*.
- Hill, William G. (1974). Prediction and evaluation of response to selection with overlapping generations. *Animal Science*, *18*(02), 117-139. doi: doi:10.1017/ S0003356100017372
- König, S., Simianer, H., Willam, A. (2009). Economic evaluation of genomic breeding programs. J Dairy Sci.
- Qualitas AG. (2012a). Genomische Selektion
- Schmitz-Hsu, Fritz. (2012). Anwendung der genomischen Selektion in den Genetikprogrammen von Swissgnetics
- Willam, A., Nitter, G., Bartenschlager, H., Karras, K., Niebel, E., & Graser, H.-U. (2008).
 ZPLAN Manual for a PC-Program to Optimize Livestock Selection Schemes.