

Wie stark belasten unsere Nutztiere die Umwelt?

SVT-Tagung vom 28. April 2009

Schweizerische Hochschule für Landwirtschaft (SHL), Zollikofen

Methansenkung beim Wiederkäuer: Fallbeispiele aus der Fütterung und der Genetik

Carla Soliva ETH Zürich

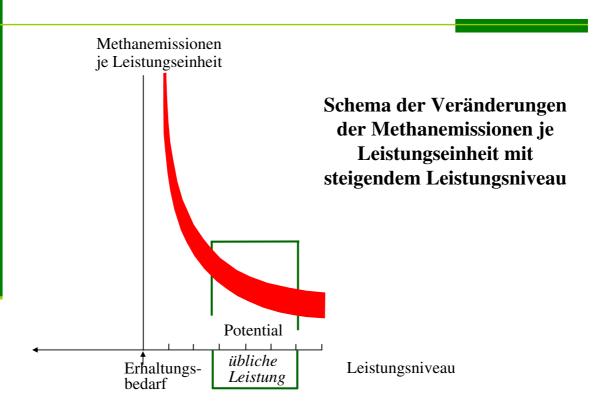
Methansenkung beim Wiederkäuer: Fallbeispiele aus der Fütterung und der Genetik

Carla R. Soliva, Departement für Agrar- und Lebensmittelwissenschaften, ETH Zürich

Mögliche Prinzipien von methansenkenden Massnahmen

- •Reduktion von Methan je kg Milch oder Fleisch wenn allein durch Leistungssteigerung / Tiere mit höherer Leistung: nur bei gleichbleibendem Konsum wirksam
- •Reduktion von Methan je kg (verdaulichem) Futter echte Methansenkung, meist erhöhte Futterkosten

Beide Arten an Massnahmen sind möglich, eine Kombination ist besonders viel versprechend



Ist eine höhere (Milch)-Leistung die Lösung?

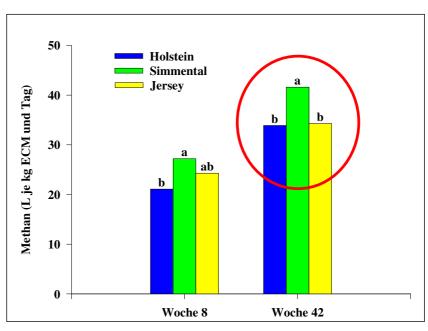
Flachowsky und Brade, 2007:

"Die Erhöhung der tierischen Leistung und eine damit mögliche Reduktion der Anzahl der Wiederkäuer sollte die (gegenwärtig) effektivste Massnahme sein, eine verminderte Methanemission zu erzielen."

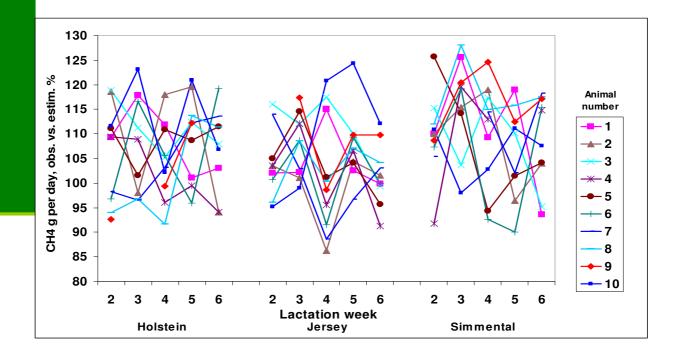
Leistungssteigerung

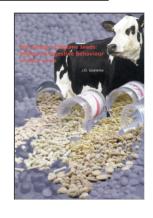
Berechnete Methanbildung zur Erzeugung der je Einwohner jährlich verbrauchten Milch- und Rindfleischmenge

(ROSENBERGER et al., 2004)


Methan (kg):	Milch	Fleisch	Milch + Fleisch
Holstein, 10'000 kg/a	5.0	9.0	14.0 ¹⁾
Fleckvieh, 6'000 kg/a	7.7	5.8	10.9

¹⁾Annahme: zusätzliches Fleisch muss über Mutterkuhhaltung erzeugt werden


Zweinutzungsrassen: bei gleicher Milchleistung höhere Methanemissionen je kg Milch (Münger et al. 2006)


Selektion von Niedrig-Emittenten? Beobachtete relativ zu aus Regressionen erwarteter Methanbildung von 30 Kühen

(Gleichung nach KIRCHGESSNER et al., 1991)

Steigerung des Anteils an Kraftfutter in der Ration

Fütterungsmanagement

Methanemissionen:

Problem der Grundfutter basierten Fütterung des Wiederkäuers

- Methan entsteht aus der fermentierbaren organischen Masse des Futters
- Aus fermentierbarer Faser wird besonders viel Methan freigesetzt: mehr als aus Stärke u. Zucker
- Es braucht besonders viel (Grund-)Futter je kg Milch/Fleisch, wenn dieses schlecht verdaulich ist

Fütterungsmanagement

Versuch mit Schafen

Kreuzer et al., 1986	Rationstyp			
	cellulosere	stärkereich		
Aufnahme (MJ/Tag):				
- Bruttoenergie	14	=	14	
- verdauliche Energie	8.9^{b}	<	10.1 ^a	
Methanfreisetzung:				
- Liter/Tag	21^{a}	>	12 ^b	
- % der BE-Aufnahme	5.9 ^a		3.5 ^b	

Fütterungsmanagement

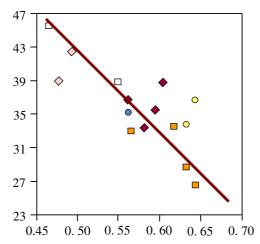
Nur sehr hohe Kraftfutteranteile (>80%) senken Methan stark

Grundfutter: Kraftfutter-Verhältnis

Heu (%)	100	80	60	40	20	5
Mais (%)	0	20	40	60	80	95
Methan (% ¹)	7.5	7.8	8.2	8.1	5.7	3.4

¹der BE-Aufnahme

(BLAXTER und WAINMAN, 1964)


Züchtung und Einsatz besonderer Gräsersorten z.B.

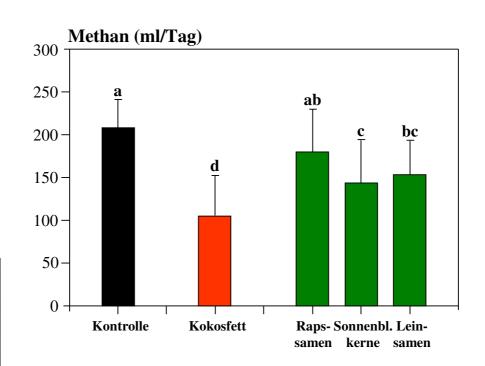
- Züchtung "zuckerreicher" (=WSC-reicher) Gräser (IGER)
 - Gräsersorten mit höherer Verdaulichkeit

(Dauer zur Entwicklung einer neuen Sorte: >10 Jahre)

Ansatz: Relative Methanbildung sinkt mit Verbesserung der Verdaulichkeit (Moss et al., 1994)

Methan (g/kg verdauliche organische Masse)

Wirkung: weniger Methan pro kg Milch und Fleisch, mehr Methan je Tier


Verdaulichkeit der organischen Masse

Fette, Öle und fettreiche Futtermittel

Wirksamkeit von Kokosfett und geschroteten Ölsaaten zur Methansenkung (*Rusitec*) (Machmüller et al., 1998)

Leinsamen: Methansenkung bei Milchkühen (% relativ zur Kontrolle) (Martin et al. 2007)

Lein-Form	Sar	Öl	
	unbearbeitet	extrudiert	
T-Aufnahme	-2	-16	-26
Milchleistung	-7	-10	-18
Methan			
- Liter/Tag	-12	-38	-64
- Liter/kg OM _{verdau}	-4	-22	-48
- Liter/kg Faser _{verd}		0	-50
- Liter/kg Milch	+3	-30	-53

Tanninhaltige Futterpflanzen und Extrakte?

Methanemissionen von Lämmern bei Fütterung von tanninhaltigen Leguminosen aus gemässigten Klimaten (hier: Sumpf-Hornklee) anstelle von Weidegras (WAGHORN *et al.* 2002)

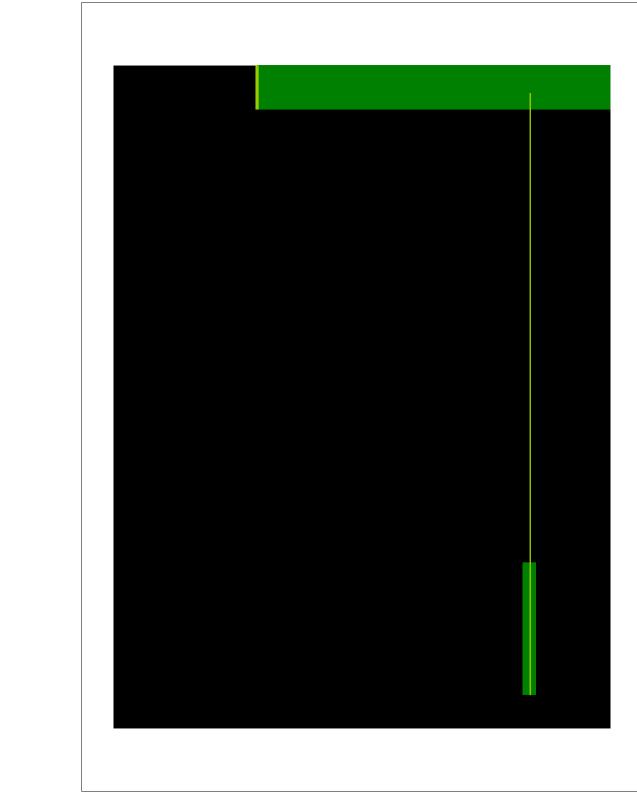
	Futterart		
	Weide- gras	Lotus pedunculatus	
Methan, g/kg Trocken- substanzaufnahme	21.0	12.0	

Ähnliche in vivo Wirksamkeit von Esparsette und Hornklee?

Tanninhaltige Pflanzen/-extrakte aus den Tropen und Subtropen (Methanhemmung: 7-100%)

	Art der Studie		
Pflanzenart	In vivo	in vitro	Referenz
Acacia mearnsii, Rinde	7		Carulla et al. 2005
Agelaea obliqua, Blatt		84	Hayler et al. 1998
Leucaena Leucocephala, Blatt		33	Hayler et al. 1998
Mangifera indica, Blatt		50	Hayler et al. 1998
Phyllantus Discoideus, Blatt		42	Hayler et al. 1998
Terminalia chebula, Fruchtpülpe		100	Patra et al. 2006

Nebenwirkungen auf andere Treibhausgase


Massnahmen: Mögliche Bedeutung für Methan und andere Schadgase

Massnahme	CH ₄	NH ₃ /N ₂ O	CO ₂
mehr Kraftfutter	(\psi)	(\du)	
fettreiche Futtermittel	\downarrow	(†)	\longleftrightarrow
saponinhaltige Extrakte	\downarrow	\downarrow	(\psi)
tanninreiche Pflanzen	(\downarrow)	\downarrow	(\downarrow)
besseres Grundfutter	1	†	\downarrow
Weide statt Stallhaltung	\longleftrightarrow	(†)	\downarrow
Futterleguminosen	\longleftrightarrow	(†)	<u> </u>

Danke für Ihre Aufmerksamkeit!

