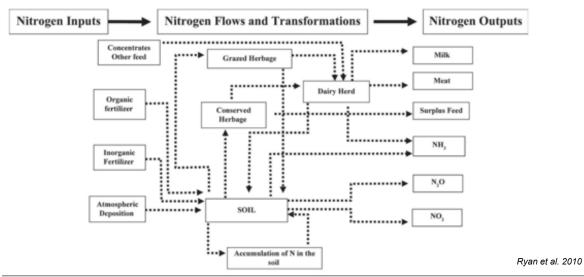
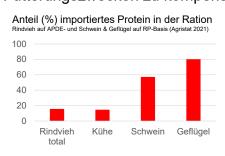


Proteineffizienz von Wiederkäuern mit besonderem Fokus auf die Bedingungen der Schweiz


Fredy Schori, Forschungsgruppe Wiederkäuer

SVT-Jahrestagung 2022, 13. April 2022


www.agroscope.ch I gutes Essen, gesunde Umwelt

♥ Stickstoffflüsse in einem grasbasierten Milchproduktionssystem

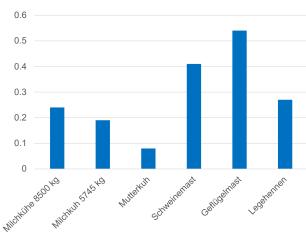
Hintergrundinformationen

- CH importiert pro Jahr ca. 256 kT Sojaschrote, 87 kT andere «Schrote» und 47 kT Maiskleber (abgeleitet Agristat 2021)
- > 50 % CH offenen Ackerfläche mit Soja anbauen, um Proteinimport zu Fütterungszwecken zu kompensieren (eigene Schätzung)

- 1.1.2022: 100 % CH Knospe-Futter für Wiederkäuer auf Bio Suisse Betrieben
 - Keine Proteinkonzentrate erhältlich, max. Milchviehfutter ~ 25 % RP
- 70 % der LN (0.7 Mio. ha) ist Grasland plus 0.5 Mio. ha Sömmerungsweiden

Proteineffizienz von Wiederkäuern | SVT-Jahrestagung 2022

. .


Hintergrundinformationen

- Nicht erreichen der Umweltziele Landwirtschaft bezüglich N (BAFU und BLW, 2016)
 - Treibhausgasemissionen u.a. Lachgas (N₂O) (Bis 2050: 1/3 senken gegenüber 1990)
 - N-haltige Luftschadstoffe (Ammoniakemissionen max. 25000t N/Jahr)
 - Nitrat (25 mg Nitrat pro L in Gewässern für die Trinkwassernutzung)
 - Landw. N-Einträge in Gewässer (50 % gegenüber 1985)
- Verbindliche Absenkpfade für N (siehe Abbildung)
- Begrenzung der Proteinergänzung in der Rindviehfütterung (Schori, 2020; Mack und Möhring 2021)

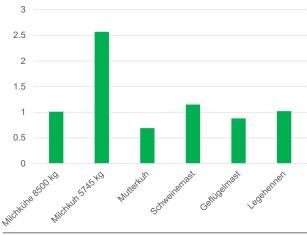
Proteineffizienzmerkmale: Brutto

Brutto Proteinnutzungseffizienz (BPUE)

- Daten aus Frankreich (Laisse et al. 2018)
- Nicht zu 100 % vergleichbar mit CH
- Verhältnisse stimmen
- Beinhaltet ganze Produktion (z.B. Aufzucht, Laktation, Galtphase)

$$BPUE = \frac{\sum_{i=1}^{n} (kg \ Produkt_{i} \times RP_{i})}{\sum_{j=1}^{n} (kg \ Futter_{j} \times RP_{j})}$$

RP = Robotobin (a)ka


Monogastrier schliessen deutlich besser ab!

Proteineffizienz von Wiederkäuern | SVT-Jahrestagung 2022

5

Proteineffizienzmerkmale: Netto

Netto Proteinnutzungseffizienz (NPKE)

- Daten aus Frankreich (Laisse et al. 2018)
- Berechnung komplex (Proteinqualität, Flächenkonkurrenz,...)

$$\begin{aligned} \text{NPUE} &= \frac{\sum_{i=1}^{n} (\text{kg Produkt}_i \times \text{R}}{\nabla^n \ \text{(kg Fitter } \times \text{RP}} \\ &\stackrel{\text{RP = Rohprotein (g/kg), KA = Konsumierbarer Anteil (%), ALM = Anteil potentieller Lebensmittel (%))} \end{aligned}$$

- Grasbasierte, milchproduzierende Fütterungssysteme schliessen deutlich besser ab!
- Beide Proteineffizienzmerkmale sollten berücksichtigt werden.

Proteineffizienz und Tierwohl

(Chen et al. 2021)

- Brutto N-Nutzungseffizienz (BNUE)
 - Bereich 14 bis 45 % (Huhtanen & Hristov, 2009)
- Herausforderungen
 - Zeitpunkt und Dauer Erhebung
 - Bestimmung der individuellen Futteraufnahme
 - Schätzung BNUE über Marker
 - Beziehung zum Tierwohl
 - Negativ korreliert mit Eutergesundheit, Fruchtbarkeit, Langlebigkeit und Leichtkalbigkeit (Chen et al. 2021)
 - Startphase der Laktation

Proteineffizienz von Wiederkäuern | SVT-Jahrestagung 2022

Beziehung zwischen Effizienzmerkmalen (Diss. Thorsten Haak)

Korrelationskoeffizienten (r)	FCR	NUE	RFI	REI	RNI
Futteraufwand (FCR)	1				
N-Nutzungseffizienz (NUE)	-0.78	1			
Restfutteraufnahme (RFI)	0.78	-0.56	1		
Restenergieaufnahme (REI)	0.65	-0.67	0.73	1	
Reststickstoffaufnahme (RNI)	0.56	-0.81	0.48	0.73	1

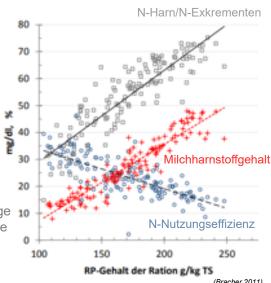
Futteraufwand: Futter in TS/energiekorrigierte Milch N-Nutzungseffizienz: N-Milch/N-Aufnahme Restfutteraufnahme: effektiver – geschätzter TS-Aufnahme Restenergieaufnahme: effektiver – geschätzte Energieaufnahme (NEL) Reststickstoffaufnahme: effektiver – geschätzte Stickstoffaufnahme

r = 0.62 zwischen Energie- und Proteinnutzungseffizienz (Basis verd. Energie- bzw. Proteinaufnahme, Phuong et al. 2013)

groscope

Marker für die Proteineffizienz (Diss. Thorsten Haak)

		NUE		RNI		
Markergruppen	n	R ²	Beste Marker	R ²	Beste Marker	
Tiermerkmale	13	0.01 - 0.57	Milchmenge	0.01 - 0.21	Körpergewicht	
Verhalten & Aktivität	46	0.00 - 0.38	Schritte	0.00 - 0.74	Schritte	
Blut	35	0.00 - 0.38	¹⁵ N	0.00 - 0.48	Harnstoff	
Atemgase	3	0.00 - 0.38	O ₂ , CH ₄	0.00 - 0.73	O_2 , CH_4	
Haarcortisol	1	0.14		0.13		
Milch	202	0.00 - 0.51	¹⁵ N	0.00 - 0.72	Harnstoff	
NIRS Kot & Milch	2	0.58 - 0.69	Kot	0.72 - 0.93	Kot	
Rektaltemperatur & Wärmebilder	84	0.00 - 0.38	Hinterbein rechts Mittelwert	0.00 - 0.56	Euter hinten Mittelwert	


R²: Bestimmtheitsmass, ²NUE: Stickstoffnutzungseffizienz, ³RNI: Reststickstoffaufnahme

Proteineffizienz von Wiederkäuern | SVT-Jahrestagung 2022

E Cobo

Einflussfaktor Ration / Fütterung

- Ration / Fütterung (Bracher 2011, Schori 2020)
 - N-Zufuhr bzw. N-Gehalt der Ration positiv korreliert mit Futteraufnahme sowie Milchleistung und negative korreliert mit NUE
 - Energie-Zufuhr (Kohlenhydrate) verbessert die NUE, abnehmend mit zunehmender Zufuhr
 - Aminosäuren (Methionin, Lysin, Histidin) können z.B. reduzierter N-Zufuhr NUE verbessern (Laroche et al. 2021)
 - Effekte einer synchronen Energie- und Proteinzufuhr sind in vivo weniger wichtig als theoretisch angenommen (Cabrita et al. 2006)
 - Konservierung, Hitzebehandlungen, Tannin und Saponin-haltige 10
 Futtermittel sowie ätherische Öle wirken hemmend auf einzelne Schritte des Proteinabbaus (Walker et al. 2005)

Einflussfaktor Tier

- Wenig Studien mit Milchkühen bez. tierspezifischen Einflussfaktoren und NUE
 - Körpergrösse, Alter, Laktationsstadium und Milchleistungspotential (Blake & Custodio, 1984, Huthanen et al. 2015)
 - NUE: 0.24 0.35 (abgeleitet von Huthanen et al. 2015)
 - Rasse und Kreuzungstiere (Genotyp und Heterosiseffekt) (McDowell & McDaniel 1968)
 - NUE: 0.286 0.326

Kontrolle der Rationen und verbessertes Management zeigen größeres Potential zur Verbesserung N-Effizienz bei laktierenden Kühen als die Selektion von effizienten Kühen (Huthanen et al. 2015)

Proteineffizienz von Wiederkäuern | SVT-Jahrestagung 2022

Begrenzung der Proteinzufuhr in Rindviehfütterung

- · Weiterentwicklung des Programms der Graslandbasierten Milch- und Fleischproduktion (GMF)
 - Aktuelles GMF: Wiesenfutteranteil (Tal: 75 %, Berggebiet: 85 %) und 10 % Kraftfutter
 - 2/3 Betriebe, 3/4 Grünlandfläche, 110 Mio. Fr./Jahr
 - Im Gespräch: Varianten 12 % und 18 % RP (Beschränkung der Kraftfuttermenge?)
 - Ziel:
 - Protein aus dem Gras und nicht vom Proteinkonzentrat
 - Wiederkäuergerechten Fütterung
 - Standortangepasste Produktion (Futterbau Tier)
 - Geringe Konkurrenz zur ackerbaulichen Nahrungsmittelproduktion.

Auswirkungen Proteinreduktion auf Milchleistung

Startphase (90 Tage)

- GMF heute:
 - 2 kg Getreidemischung
 - 1 kg Proteinkonzentrat
- GMF 12 %:
 - 3 kg Getreidemischung

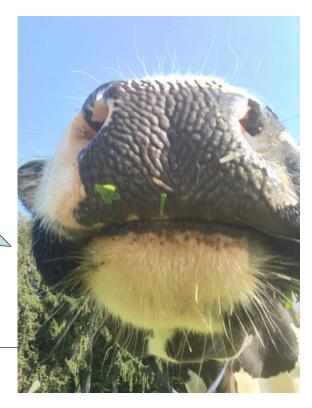
Biobetrieb, Schulbauernhof Sorens, Bergzone 1 32 Kuhpaare (Holstein, Swiss Fleckvieh) Resultate ersten 6 Milchleistungskontrolle (14-täglich) Gehäufte Kalbung 1/3 des Jahres (2021) Gehalte pro kg TS
Dürffutter: 5.3 MJ NEL, 118 g RP (22 g RP/MJ NEL)
Weidegras: 6.1 MJ NEL, 158 g RP (26 g RP/MJ NEL)
Getreidemischung: 7.7 MJ NEL, 136 g RP (18 g RP/MJ NEL)
Proteinkonzentrat: 8.2 MJ NEL, 412 g RP (50 g RP/MJ NEL)

	GMF	GMF	SE	Р
	heute	12%		
Milch (kg d-1)	29.6	27.9	0.76	***
ECM (kg d ⁻¹)	29.1	27.4	0.78	***
Milchfett (g kg-1)	40.7	40.3	0.55	-
Milchprotein (g kg-1)	30.6	30.8	0.29	-
Laktose (g kg ⁻¹)	48.1	48.4	0.20	**
Harnstoff (mg dl-1)	19.7	15.9	0.58	***
Zellzahl (log 10 ml ⁻¹)	4.58	4.59	0.05	-

ECM: energiekorrigierte Milch, SE: Standardfehler: P: Irrtumswahrscheinlichke

- · Proteineinsatz lohnt sich!
 - Mindestens in konventioneller Milchproduktion
- 2022: Milchviehfutter 25 % RP

Proteineffizienz von Wiederkäuern | SVT-Jahrestagung 2022


13

Schlussfolgerungen

- Die Schweiz importiert beträchtliche Mengen an proteinreichen Futtermitteln und ein grosser Teil wird beim Wiederkäuer eingesetzt.
- Netto-Effizienzmerkmale, die zwischen Futtermitteln und potenziellen Lebensmitteln unterscheiden, sind zu berücksichtigen.
- Tierwohl, Fruchtbarkeit und Langlebigkeit sind bei proteineffizienten Milchkühen zu prüfen.
- Proteineffizienz von Milchkühen kann durch Marker geschätzt werden, ohne dass die Futteraufnahme bekannt ist.
- Die Proteinzufuhr bzw. -gehalt der Ration spielt die grösste Rolle bezüglich der Proteineffizienz oder den Stickstoffausscheidungen.
- Die diskutierte Varianten des Programms Graslandbasierte Milch- und Fleischproduktion begrenzen die Proteinergänzung bei Wiederkäuern.
- Mindestens in konventionellen Milchproduktionsbetrieben scheint sich die Proteinergänzung zu lohnen – sogar über der Bedarfsdeckung.

Proteineffizienz von Wiederkäuern | SVT-Jahrestagung 2022