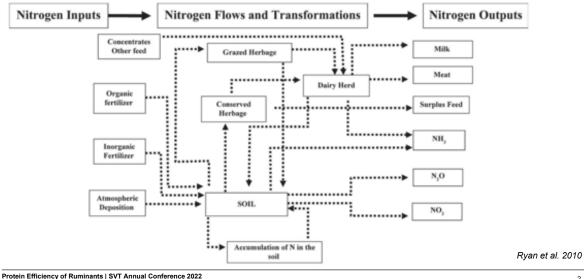


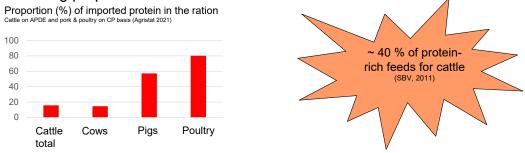
Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Agroscope

Protein efficiency of ruminants with a special focus on Swiss conditions


Fredy Schori, Ruminant Research Group

SVT Annual Conference 2022, 13 April 2022

www.agroscope.ch I good food, healthy environment


D Nitrogen flows in a grass-based dairy production system

F. Schori

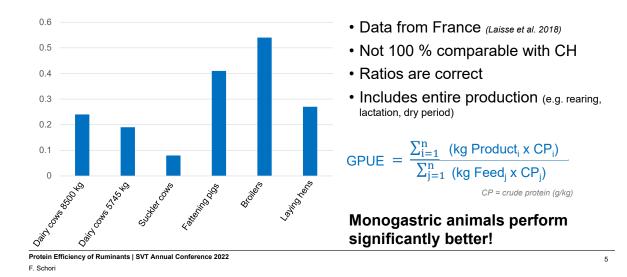
Background information

- CH imports approx. 256 kT of soybean meal, 87 kT of other "meal" and 47 kT of maize gluten per year (derived from Agristat 2021).
- > 50 % CH open arable land cultivated with soy to compensate the protein import for feeding purposes (own estimate)

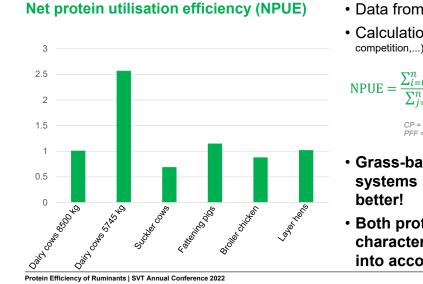
- 1.1.2022: 100 % Swiss Bud organic feed for ruminants on «Bio Suisse» farms
 - No protein concentrates available, dairy concentrates max. ~ 25% crude protein
- 70 % of the agr. land (0.7 m ha) is grassland plus 0.5 m ha of alpine pastures.

Protein Efficiency of Ruminants | SVT Annual Conference 2022 F. Schori

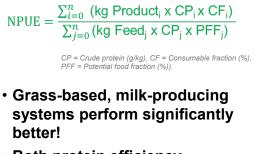
Background information


- Failure to achieve the environmental goals for agriculture with regard to N $_{(FOEN and FOAG, 2016)}$
 - Greenhouse gas emissions including nitrous oxide (N_2O) (By 2050: reduce by 1/3 compared to 1990)
 - Air pollutants containing N (ammonia emissions max. 25'000t N/year)
 - Nitrate (25 mg nitrate per L in water bodies for drinking water use)
 Agricultural N-inputs to water bodies (50% compared to 1985)
- Binding setback paths for N (see figure)
- Limiting protein supply in cattle feeding (Schori, 2020; Mack and Möhring 2021)

Entwicklung der Stickstoffverluste seit 1990 mit Absenkpfad für 2025/2030


Protein Efficiency of Ruminants | SVT Annual Conference 2022 F. Schori 3

Protein efficiency criteria: Gross



Gross Protein Utilisation Efficiency (GPUE)

Protein efficiency criteria: Net

- Data from France (Laisse et al. 2018)
- Calculation complex (protein quality, area competition,...)

 Both protein efficiency characteristics should be taken into account.

F. Schori

Protein efficiency and animal welfare

F. Schori

C Relationship between efficiency criteria (Dissertation Thorsten Haak)

Correlation coefficients (r)	FCR	NUE	RFI	REI	RNI
Feed conversion ratio (FCR)	1				
N-use efficiency (NUE)	-0.78	1			
Residual feed intake (RFI)	0.78	-0.56	1		
Residual energy intake (REI)	0.65	-0.67	0.73	1	
Residual nitrogen intake (RNI)	0.56	-0.81	0.48	0.73	1

Feed conversion ratio: feed DM/energy corrected milk

N-use efficiency: N-milk/N-intake

Residual feed intake: effective - estimated DM intake

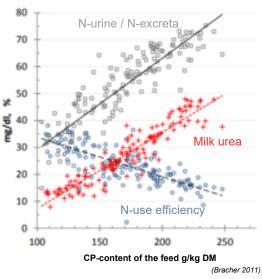
Residual energy intake: effective - estimated energy intake (NEL)

Residual nitrogen intake: effective - estimated nitrogen intake

r = 0.62 between energy and protein utilisation efficiency (based on digestible energy or protein intake, *Phuong et al.* 2013)

Protein Efficiency of Ruminants | SVT Annual Conference 2022 F. Schori

Markers for protein efficiency (Dissertation Thorsten Haak)


		NUE		RNI		
Marker groups	n	R ²	Best markers	R ²	Best markers	
Animal characteristics	13	0.01 - 0.57	Milk yield	0.01 - 0.21	Body weight	
Behaviour & Activity	46	0.00 - 0.38	Strides	0.00 - 0.74	Strides	
Blood	35	0.00 - 0.38	¹⁵ N	0.00 - 0.48	Urea	
Breathing gases	3	0.00 - 0.38	O_2 , CH_4	0.00 - 0.73	O_2 , CH_4	
Hair cortisol	1	0.14		0.13		
Milk	202	0.00 - 0.51	¹⁵ N	0.00 - 0.72	Urea	
NIRS faeces & milk	2	0.58 - 0.69	Faeces	0.72 - 0.93	Faeces	
Rectal Temperature & Thermal Imaging	84	0.00 - 0.38	Hind leg back right average	0.00 - 0.56	Udder back average	

R² : coefficient of determination,² NUE: nitrogen use efficiency,³ RNI: Residual nitrogen intake

Protein Efficiency of Ruminants | SVT Annual Conference 2022 F. Schori

Influencing factor ration / feeding

- Ration / feeding (Bracher 2011, Schori 2020)
 - N-supply or N-content of the diet is positively correlated with feed intake and milk yield and negatively correlated with NUE
 - Energy intake (carbohydrates) improves NUE, decreasing with increased supply.
 - Amino acids (methionine, lysine, histidine) can improve e.g. reduced N supply NUE (Laroche et al. 2021)
 - Effects of synchronous energy and protein intake are less important in vivo than theoretically assumed (*Cabrita et al. 2006*)
 - Preservation, heat treatments, tannin and saponin-containing feeds as well as essential oils have inhibitory effects on individual steps of the protein degradation (Walker et al. 2005).

a

Influencing factors animal

- Few studies with dairy cows on animal-specific influencing factors and NUEs.
 - Body size, age, stage of lactation and milk yield potential (Blake & Custodio, 1984, Huthanen et al. 2015).
 NUE: 0.24 0.35 (derived from Huthanen et al. 2015)
 - Breed and crossbreed animals (genotype and heterosis effect) (McDowell & McDaniel 1968)
 NUE: 0.286 0.326

Control of rations and improved management show greater potential to improve Nefficiency in lactating cows than selection of efficient cows (Huthanen et al. 2015)

Protein Efficiency of Ruminants | SVT Annual Conference 2022 F. Schori

Limiting protein supply in cattle diets

- Further development of the Grassland-based Milk and Meat Production (GMM) programme
 - Current GMM: meadow fodder share (valley: 75 %, mountain area: 85 concentrated feed.
 - 2/3 farms, 3/4 grassland, 110 million Fr./year
 - Under discussion: 12% and 18% CP variants (Limiting the amount of concentrates?)

Goal:

- · Protein from herbage and not from protein concentrate
- Ruminant-friendly feeding
- · Production adapted to the location (forage production animal)
- · Little competition with arable food production.

11

Effects of protein reduction on milk yield

Beginning of lactation (90 days)

- GMM today:
 - 2 kg cereal mixture
 - 1 kg protein concentrate
- GMF 12 %:
 - 3 kg grain mixture

Organic farm, School Farm Sorens, mountain zone 1 32 cow pairs (Holstein, Swiss Fleckvieh) Results of the first 6 milk recordings (fortnightly) Grouped calving 1/3 of the year (2021) Contents per kg dry matter Hay: 5.3 MJ NEL, 118 g RP (22 g RP/MJ NEL) Pasture herbage: 6.1 MJ NEL, 158 g RP (26 g RP/MJ NEL) Cereal mixture: 7.7 MJ NEL, 136 g RP (18 g RP/MJ NEL) Protein concentrate: 8.2 MJ NEL, 412 g RP (50 g RP/MJ NEL)

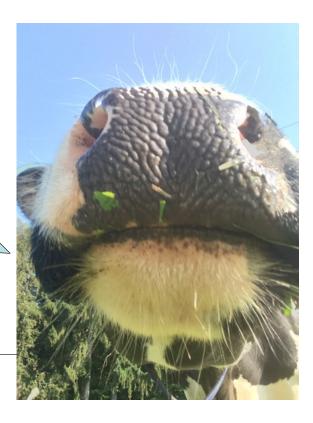
GMF Ρ GMF SE today 12% 27.9 0.76 *** Milk (kg d-1) 29.6 *** 29.1 27.4 0.78 ECM (kg d⁻¹) Milk fat (g kg⁻¹) 40.7 40.3 0.55 30.8 0.29 Milk protein (g kg⁻¹) 30.6 Lactose (g kg⁻¹) 48.1 48.4 0.20 0.58 *** 19.7 15.9 Urea (mg dl⁻¹) Somatic cells (log 10 ml-1) 4.58 4.59 0.05

ECM: energy corrected milk, SE: standard error: P: probability of error

- Protein use pays off!
 At least in conventional milk production
- 2022: Dairy cattle feed 25 % CP

13

Protein Efficiency of Ruminants | SVT Annual Conference 2022 F. Schori


Conclusions

- Switzerland imports considerable quantities of protein-rich feeds and a large proportion is used for ruminants.
- Net efficiency characteristics that distinguish between feed and potential food shall be taken into account.
- Animal welfare, fertility and longevity are to be tested in protein-efficient dairy cows.
- Protein efficiency of dairy cows can be estimated by markers without knowing the feed intake.
- The protein intake or content of the ration plays the biggest role in terms of protein efficiency or nitrogen excretion.
- The discussed variants of the Grassland-based Milk and Meat Production programme will limit the protein supply in ruminants.
- At least in conventional dairy production farms, protein supplementation seems to be worthwhile - even above the protein requirements.

Protein Efficiency of Ruminants | SVT Annual Conference 2022

F. Schori

Agroscope

V