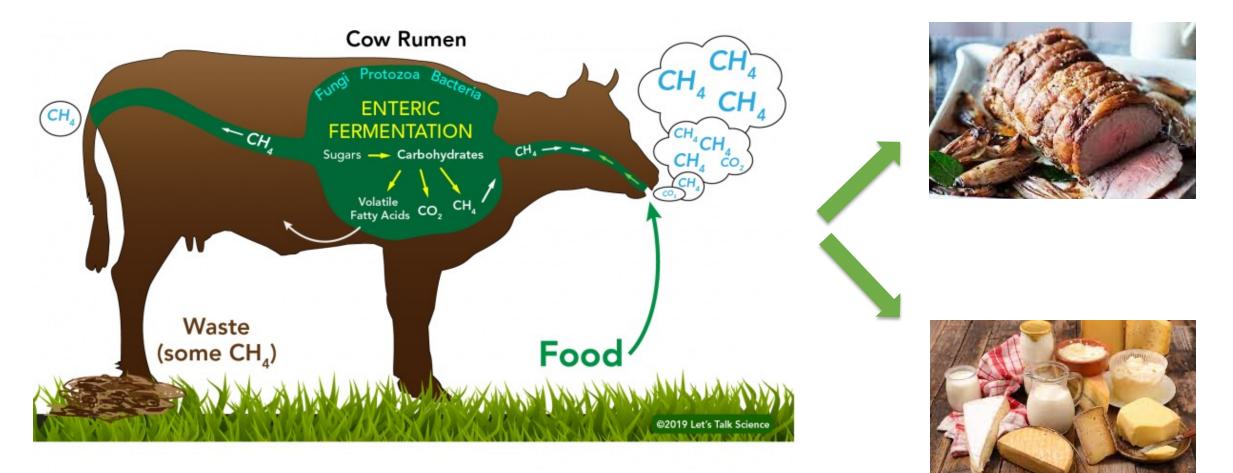
ETH zürich

DUSYS **D**CHAB **C**Agroscope


Exhalomics as a non-invasive method for assessing rumen fermentation in dairy cows

Zakirul Islam, Susanna Räisänen, Stamatios Giannoukos, Fabian Wahl, Renato Zenobi, Mutian Niu

Animal Nutrition Group, ETH Zurich

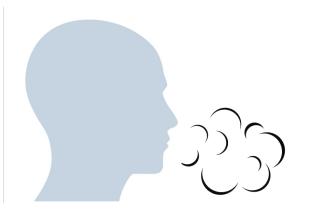
EHzürich

Unique Role of Ruminants in Agri-Food

• Rumen fermentation and microbial activity are key

2

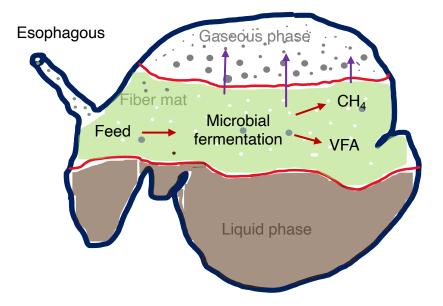
Other Non-invasive Alternative Approaches?



Pashudhanpraharee; Nairaland Forum; VetEnt

Exhalomics in Human and Ruminant Research


Human breath biomarker-based diagnosis

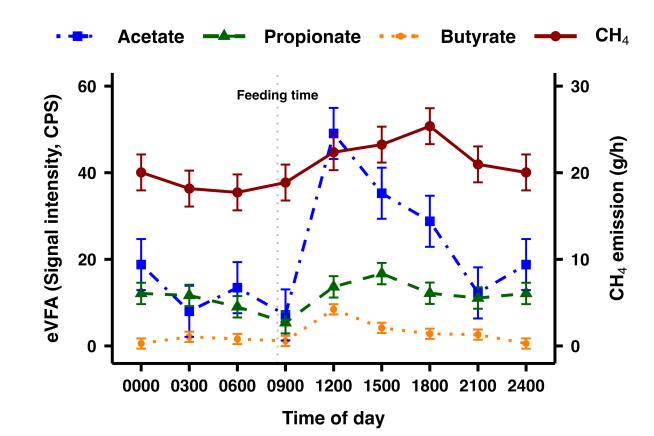

Diagnostics of asthma in children

- Ketosis detection in exhalomes using GC-MS (Dobbelaar et al., 1996)
- Effect of eructation on some exhaled volatile compounds profiles (Oertel et al., 2018)
- Similar molar proportions of VFA in rumen gas and liquid samples (Dewhurst et al, 2001)
- Research gap: key rumen fermentation parameters in exhalome – VFAs remain largely unexplored

Bovine Exhalomics for Animal Research

Bovine "**breath**" or **Exhalome**: lungs + rumen

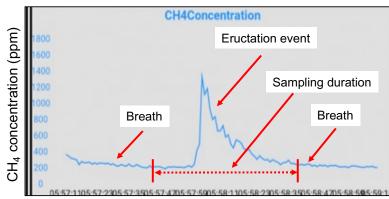
• Eructation: regulate the release of gases from rumen into the atmosphere


Daily Pattern of Exhaled Volatile Fatty Acids (eVFA)

GreenFeed (head chamber)

SESI-HRMS

 Concentrations of exhaled acetate and butyrate increased rapidly right after feeding


Can exhalomics replace rumen sampling?

Objective: To Validate the Exhaled VFA as a Proxy for Rumen VFA

- Rumen-cannulated cows
 - ✓ n = 4
- Design: 3-period Switchback (ABA/BAB)
- Diet treatments
 - ✓ High-starch (16% of DM)
 - ✓ Low-starch (6% of DM)
- Sample collection
 - ✓ Eight times over 2 days to

represent every 3-h across the day

Exhalome sampling

SESI-HRMS for eVFA

HPLC for **rVFA**

ETH zürich

Statistical Analysis

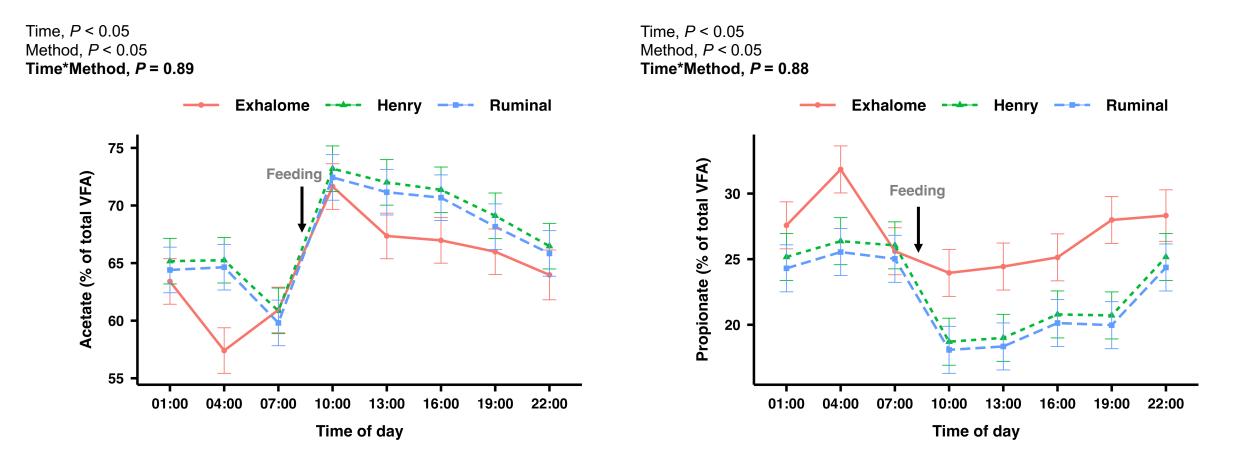
- Prediction of VFA in gas phase using Henry's Law
- Mixed model with repeated measures using R

 $Y_{ijk} = \mu + CS_i + P_j + D_d + M_c + D_d \times M_c + T_k + CO_e + e_{ijk}$

$$Y_{ijk} = \mu + CS_i + P_j + M_d \times T_c + CO_e + e_{ijk}$$

- Random effect of cow nested in sequence
- Random effect of time
- Fixed effect of period
- Fixed effect of diet
- Fixed effect of VFA measurement method
- Fixed effect of diet × method interactions
- Fixed carryover effect

• Method × time of day interactions

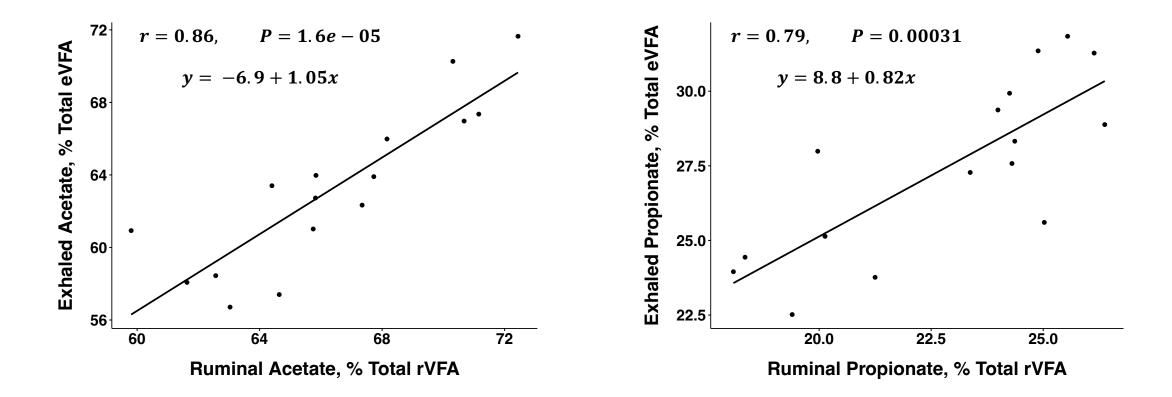

No Interactions Between VFA Measurement Method and Diet

	Least Square Means							<i>P</i> -value		
	HS-E	LS-E	HS-R	LS-R	HS-H	LS-H	SE	Diet	Method	Diet × Method
% of total VFA										
Acetate	63.6	61.3	65.9	65.2	66.7	65.9	1.51	0.29	< 0.05	0.61
Propionate	27.8	28.9	23.0	24.5	23.7	25.3	1.17	0.21	< 0.05	0.94
Butyrate	7.93	8.72	10.3	10.4	8.97	8.84	0.551	0.62	< 0.05	0.36
A:P	2.36	2.25	3.02	2.94	2.95	> 2.87	0.195	0.61	< 0.05	0.98

HS = High starch; LS = Low starch; E = Exhaled; R = Ruminal; H = Henry's law-predicted

- No interactions for all rumen fermentation parameters
- Similar numerical changes for acetate, propionate, and A:P, might because lack of power

Ruminal vs. Exhaled VFA in 3-h Intervals - High-starch Diet


No method by time interactions

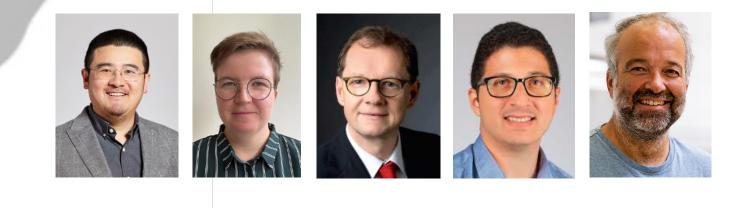
Ruminal vs. Exhaled VFA in 3-h Intervals - Low-starch Diet

Time. *P* < 0.05 Time, *P* < 0.05 Method, *P* < 0.05 Method. *P* < 0.05 Time*Method, *P* = 0.99 Time*Method, *P* = 0.99 Exhalome Ruminal Exhalome Henry Ruminal Henry Feeding Propionate (% of total VFA) Feeding Acetate (% of total VFA) 70 30 65 25 60 20 55 01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00 04:00 07:00 10:00 13:00 19:00 22:00 16:00 Time of day Time of day

- Similar trend in acetate and propionate molar proportions
- The method used may affect the absolute but not relative profile

Linear Regression to Check Mean Bias and Slope Bias

Strong Pearson correlations, minor slope biases for acetate and propionate



Take-home Message

- Non-invasive exhalomics approach has great potential to monitor and assess rumen fermentation
- Further validation with a larger sample size and adequate statistical power is needed
- Comparison using more commonly used analytical platform is needed (e.g., GC-MS)
- Further exploration of other exhalomics features

Zakirul Islam zakirul.islam@usys.ethz.ch

