

Proteineffizienz von 50 % in der Schweineproduktion Wunschdenken oder Realität 2025?

Prof. Dr. Peter Spring Dozent für Schweine- und Geflügelernährung, HAFL

▶ Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

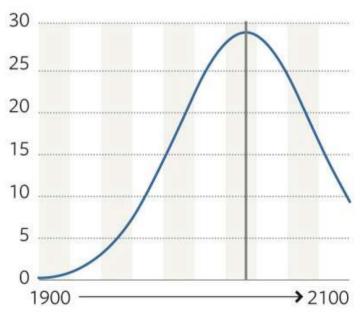
Proteineffizienz

► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Proteineffizienz ist zentral für alle drei Elemente der Nachhaltigkeit

▶ Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Am Phosphor hängt das Schicksal der Menschheit


Ohne Phosphor kann der Mensch nicht leben: Doch schon bald droht der lebenswichtige Rohstoff knapp zu werden – und er lässt sich durch nichts ersetzen.

Phosphate

Weltweite Jahresproduktion

in Mio. Tonnen pro Jahr, Modelberechnung

▶ Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Zwei unterschiedliche Systeme

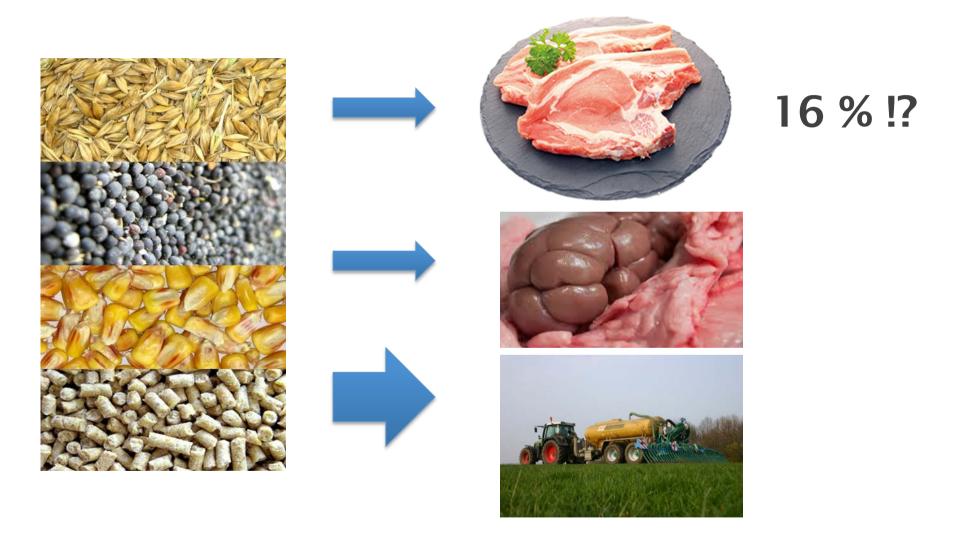
Umwandlung von Futterprotein in essbares Protein

► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Güterabwägung

Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Tierkategorie	Futtermenge kg	Proteingehalt %	Protein kg
Muttersau	1'300	16.0	208
23 Ferkel	$23 \times 17 \times 1.5 = 587$	17.5	103
22 Mastschweine	22 x 84 x 2.6 = 4'805	15.5	745
Total			1'056


1'056 kg Protein : 22 Schweine = 48 kg Protein pro Schwein

109 kg LG -> 49 kg verkaufsfertiges Fleisch (davon 10 % Koch- und Ess-Verluste) -> à 18 % Protein = 7.9 kg Protein

16 %

[►] Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Proteineffizienz: 16 % sind ungenügend

▶ Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

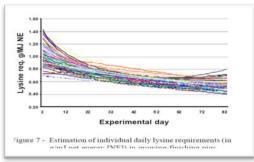
Henning Luther, SUISAG

Futterverwertung: Erstmals eine 1 vor dem Komma

Die Futterverwertung hat sich bei den MLP-Prüftieren aber auch in der Praxis in den letzten Jahren weiter verbessert. Im September hat erstmals eine VGP Prüfgruppe unter 2.0 Futterverwertung abgeschlossen. Ein guter Anlass einmal einen Blick auf dieses Merkmal zu werfen.

Die Futterverwertung ist ökonomisch und ökologisch ein wichtiges Merkmal in der Schweineproduktion. In der Mast sind die Futterkosten neben dem Ferkelpreis der grösste Kostenblock. Aus ökonomischer Sicht soll das Futter also möglich als Fleisch (sprich Schwein) den Stall verlassen und nicht als Gülle, denn nur für das Schwein bekommt man Geld. Die Gülle muss dagegen zum Teil sogar kostenträchtig abgeführt werden.

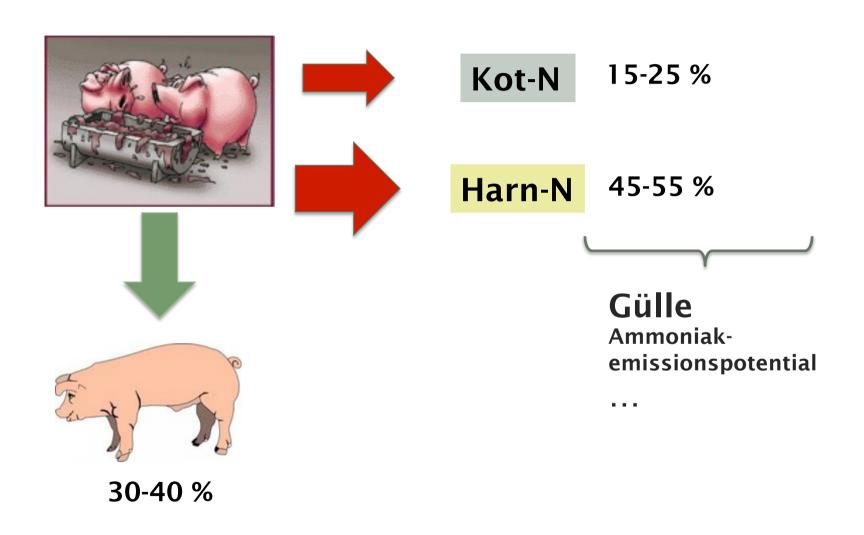
Auch vom ökologischen Gesichtspunkt


In der Praxis ist die Erfassung der Futterverwertung häufig nur relativ ungenau möglich (z.B. bei kontinuierlicher Mast). Das ist wohl ein Grund warum Praktiker das Merkmal trotz der wirtschaftlichen Bedeutung weniger beachten als zum Beispiel die Fleischigkeit, die auf der Schlachtabrechnung für jedes Tier klar ersichtlich ist. An der Mastprüfanstalt kann die Futteraufnahme und damit auch die Futterwertung dagegen mit Hilfe der elektronischen Futterautomaten selbst bei Gruppenhaltung

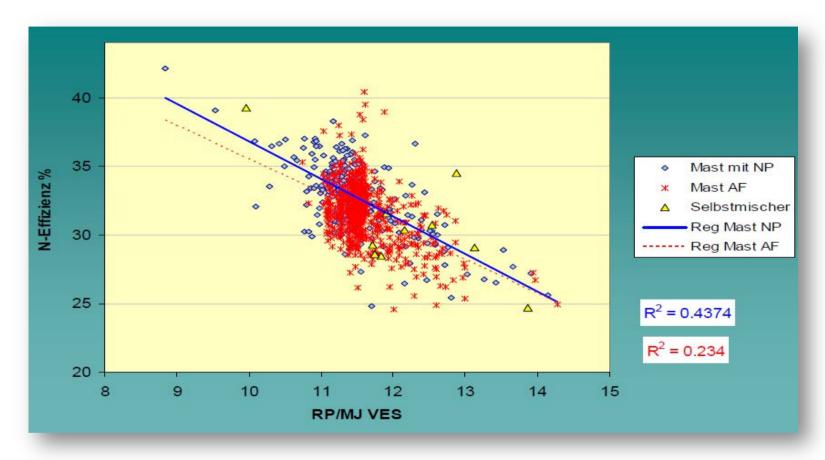
In den letzten Jahren konnte die Futterverwertung an der MLP, aber auch in der Praxis, weiter verbessert werden. Dies hat mehrere Ursachen, 7um Ersten wachsen die Schweine heute deutlich schneller und erreichen damit jünger das übliche Schlachtgewicht. Es muss also weniger Erhaltungsbedarf «erfüttert» werden. Die höheren Zunahmen sind zum Teil genetisch bedingt (Zuchtfortschritt) und auch dem besseren Gesundheitsniveau (z.B. durch Circoimpfung) zuzuschreiben. Zum Zweiten sind die Schweine heute noch etwas fleischiger als früher. Eine höhere Fleischigkeit ist günstig für die Futterwertung, weil es 3-4 Mal so viel Energie benötigt 1 kg Fett zu erzeugen wie 1 kg schieres Fleisch. Die hohe Fleischigkeit darf dahei aber nicht mit tiefen

Drei Herausforderungen

Effizientere Tiere


Genauer am Bedarf füttern

Nebenprodukte und Gastrosuppe wieder veredeln


► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Ist 50 % in der Mast möglich?

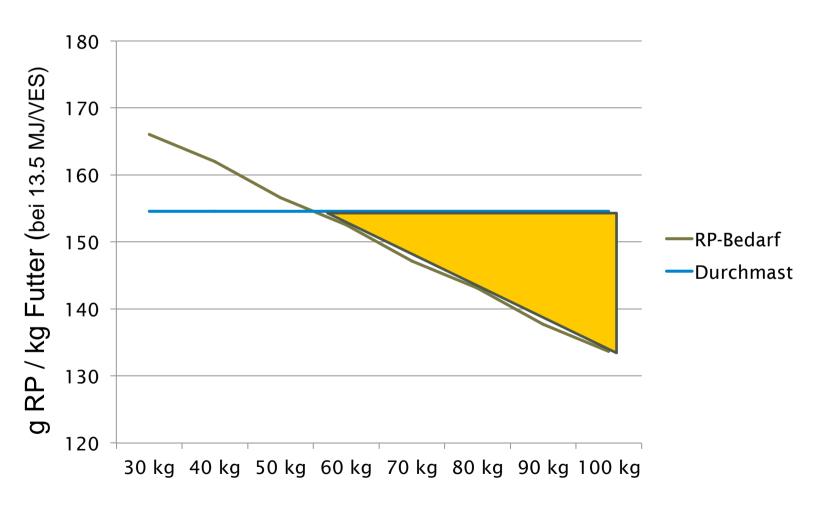
N-Effizienz in Mastbetrieben

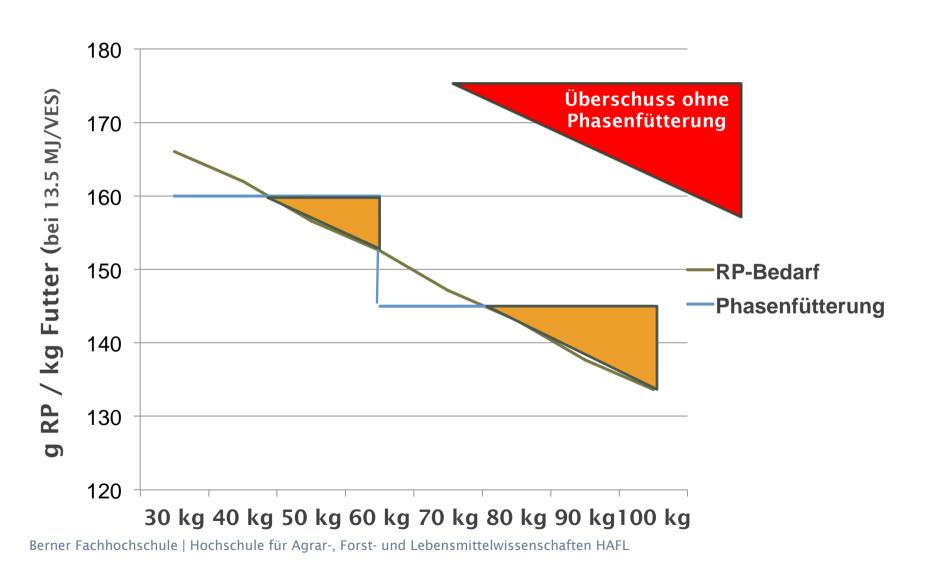


- > Durchschnittliche N-Effizienz = 32 % (36 % bei 25 g und nicht 22.2 g/N
- > Effizienz korreliert mit Proteingehalt der Ration
- Bei gleicher oder ähnlicher Fütterung sehr grosse Streuung

N-Effizienz und Management

- > Maximale Tiergesundheit (Hygienekonzept)
- Beste Ferkelqualität
- Leistung / Leistung / Leistung
- > Optimales Stallklima (vor allem im Liegebereich)
- > Homogene Mastgruppen
- Stress reduzieren
- **>**


Lysinbedarf im Verlaufe der Mast


Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Quelle: Gelbes Buch, 2011

Durchmast: grosser RP-Überschuss gegen Mastende

Phasenfütterung: Reduktion der RP-Überschüsse

Anteil der Mastbetriebe mit MSP mit Phasenfütterung

Total erfasste	Mastbetriebe	2'872

	Betriebe			MSP		
Alleinfutter	oder Alleinfu	utter zu Schotte				
MSP	Anzahl	davon mit Phase	nfütte-	Anzahl	davon mit Phasenfütte-	Antei
			rung		rung	in %
< 200	1'846		175	184'582	17'501	9.5
200 - 399	484		137	145'159	41'203	28.4
400 - 599	152		53	76'091	26'660	35.0
600 - 999	83		29	62'114	21'639	34.8
> 1000	16		9	18'655	10'748	57.6
	2'580		403	486'600	117'751	
	Anteil n	nit Phasenfütterung	15.6%	Anteil mit	Phasenfütterung 24.2%	
MSP < 200	43		14	4'264	1'447	33.9
200 - 399	83		55	24'777	16'510	66.6
400 - 599	61		45	30'318	22'404	73.9
600 - 999	85		68	63'443	51'248	80.8
> 1000	21		19	25'636	22'480	87.7
	292		201	148'439	114'090	
	Anteil n	nit Phasenfütterung	69.0%	Anteil mit P	nasenfütterung 76.9%	
Anteil Betrie	he mit Phas	enfütterung an all	en erfa	sten Retrieh	pen 21.1%	/
micen betire	be iiiie i iius		cii ciias	sten betnes	21.17	0
	e Mastplätz	THE STATE OF THE S	en en a	Jacon Bether	635'0	

Futterverbrauch und Kosteneinsparungen

Mastplätze	Menge Gesamtfutter ¹⁾	Menge Ausmastfutter ²⁾	Einsparungen Ausmastfutter³)	Einsparung Futter minus Silokosten
250	176 t	105.6 t	Fr. 1'795	Fr. 295
500	352 t	211.2 t	Fr. 3'590	Fr. 2'090
750	528 t	316.8 t	Fr. 5'386	Fr. 3'886
1'000	704 t	422.4 t	Fr. 7'181	Fr. 5'681

^{1) 220} kg Futter pro Tier und Mast, 3.2 Umtriebe pro Jahr

```
18.5 t Silo: jährliche Kosten Fr. 1'500.-
```

Fr. 13'400.- (Fundament: 2'500.-; Bewilligung: 300.-; Silo: 6'600.-; Futterschnecke:

1'300.-; Montage inkl. Anschluss: 700.-; Eigenleistungen: 2'000.-).

9.75 % (Annuität: 12 Jahre, 2.5 % Zins) oder 10 %

^{2) 60%} des Futters als Ausmastfutter

³⁾ Preisdifferenz zu Durchmastfutter: minus Fr. 1.70 pro 100 kg für Ausmastfutter (Fr. 17.- pro t)

Umstellungspotential ist vorhanden

Umstellung gemäss Betriebsgrösse	Potential an erfassten MSP	%
Umstellung der Betriebe mit >600 MSP	63'732	10.04
Umstellung der Betriebe mit 400-599 MSP	57'345	9.03
Umstellung der Betriebe mit 200-399 MSP	112'223	17.67

Mit der Umstellung aller Betriebe mit über 200 MSP könnte der Anteil der Schweine mit Phasenfütterung auf 73.2 % gesteigert werden.

Reduktionspotential (10 g RP/kg entsprechen 10%)?

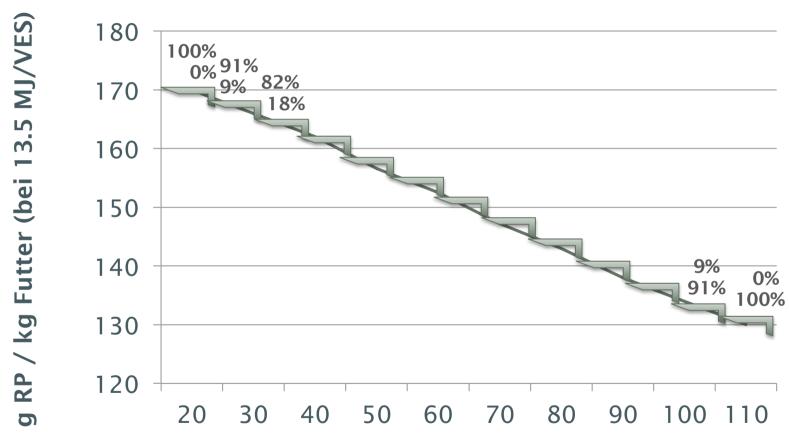
	Vormast	Ausmast	Total bei 40:60
Durchmast	158 g	158 g	158 g
Phasenfütterung	165 g	145 g	153 g
Phasenfütterung	165 g*	140 g	150 g
Phasenfütterung	158 g	140 g	147 g

^{*}Sollte in dieser Phase zu besserer Leistung und daher gleichbleibender Effizienz führen

Sieben Phasen bei Truten

RATION NUMBER		2	1		2		3		4		5		6		7
MALES	DAYS	0	21	22	-42	43	-63	64	4-84	85	-105	106	-126	127	-147
FEMALES	DAYS	0-	21	22	-42	43	-56	57	7-70	71	-84	85	-98	99	126
AMINO ACIDS		Total	Digestible												
Lysine		1.48	1.41	1.29	1.21	1.12	1.03	0.97	0.89	0.83	0.76	0.72	0.66	0.61	0.56
Methionine		0.53	0.50	0.46	0.44	0.41	0.38	0.37	0.33	0.32	0.29	0.30	0.27	0.27	0.24
Methionine + Cystine		0.96	0.91	0.85	0.80	0.74	0.69	0.66	0.61	0.58	0.53	0.53	0.48	0.48	0.44
Tryptophan		0.21	0.20	0.20	0.19	0.18	0.17	0.15	0.15	0.15	0.13	0.14	0.12	0.14	0.11
Threonine		0.86	0.82	0.76	0.71	0.67	0.62	0.59	0.54	0.52	0.47	0.45	0.41	0.39	0.36
Arginine		1.51	1.43	1.32	1.24	1.15	1.07	1.00	0.92	0.85	0.79	0.75	0.68	0.64	0.59
Valine		0.99	0.94	0.87	0.82	0.77	0.71	0.67	0.63	0.59	0.54	0.52	0.47	0.45	0.42
iso-Leucine		0.90	0.86	0.78	0.74	0.69	0.64	0.60	0.55	0.52	0.48	0.46	0.42	0.40	0.36
MINERALS															
Calcium		-1,	18	1.	.06	0	.94	0	.84	0	.72	0	.64	0	.56
Available Phosphorous		0.	60	0.	53	0	47	0	.42	0	.36	0	32	0	.28
NPP*		0.	58	0.	52	0.	.47	0	.42	0	.37	0	32	0	.28
Sodium**		0.	14	0.	13	0	12	0	.11	0	.11	0	10	0	.10
Chloride**		0.	16	0.	15	0	14	0	.14	0	.13	0	13	0	.13

^{*} None Phytate Phosphorus. Further information on phosphorus is available in Aviagen technical publication REVISED PHOSPHORUS AND CALCIUM GUIDELINES FOR TURKEYS 2011


Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Quelle: Aviagen, 2015

^{**} Electrolyte levels are shown as an indication but should be adjusted to local conditions to control moisture content of the bedding.

Multiphasenfütterung bei Rein Raus oder mit Spotmix

170 g RP Jager, 130 g RP Ausmast

Wo liegen die minimalen/optimalen Gehalte?

Durchmast		VES_MJ/kg	RP_g/kg	Lys_g/kg	P_g/kg	RP / MJ VES	Lys / MJ VES	P / MJ VES
Vormast					21	70		
Standard	х	13.68	173.24	11.23	5.19	12.64	0.82	0.37
(inkl. Label)	min	13.1	150.0	11.0	3.9	11.45	0.82	0.29
(n=17)	max	14.0	185.0	11.5	6.0	13.21	0.82	0.43
NPr	x	13.70	163.96	10.95	4.19	12.02	0.79	0.30
(n=57)	min	13.0	154.0	9.9	3.6	11.31	0.85	0.26
(n=57) ma	max	14.5	180.0	11.5	5.2	13.24	0.85	0.40
P r (n=3)	x	13.87	181.67	11.42	4.20	13.10	0.83	0.30
Ausmast				4				
Standard	x	13.36	161.10	9.17	4.64	12.06	0.69	0.35
(inkl. Label)	min	12.7	150.0	8.8	4.0	11.81	0.65	0.30
(n=10)	max	13.9	170.0	10.0	5.0	12.69	0.75	0.39
NPr	x	13.7	155.76	9.34	3.92	11.35	0.69	0.29
(n=57)	min	13.0	140.0	8.5	3.5	10.0	0.61	0.26
(11-37)	max	14.5	165.0	10.0	4.5	12.2	0.75	0.31
Pr (n=1)	x	13.4	170.0	10.0	4.0	12.69	0.75	0.30

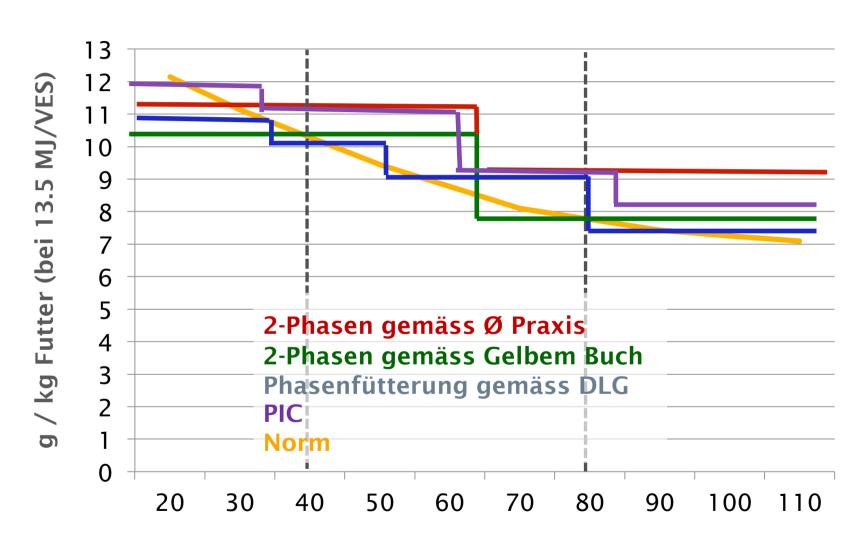
Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Agrarforschung Schweiz 2 (6): 244-251, 2011

Bedarf an einzelnen essentiellen AS und Gesamt-AS-Bedarf bestimmen RP-Gehalt

Lysin
Methionin
Methionin und Cystin
Threonin
Tryptophan
Valin

Isoleucin


Ergänzen

Leucin
Phenylalanin
Phenylalanin und Tyrosin
Arginin (für Jungtiere essentiell)
Histidin (für Jungtiere essentiell)

Versorgung über genügend Rohprotein sichergesellt

Lysingehalte mit Phasenfütterung

Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Quellen: Gelbes Buch, 2011 .
Bracher und Spring, 2010

Wir tendieren auch mit Phasenfütterung gegen Mastende zu überfüttern.

Was geschieht bei Absenkung des Rohproteingehaltes?

Tiere: 72 F1-Tiere

Geschlecht: Eber

Kastraten

Sauen

Futter: - Kontrolle gemäss CH-Normen

- 20 % Reduktion der AS-Gehalte

Phasen: 3-Phasenfütterung (20-60, 60-100, 100-140)

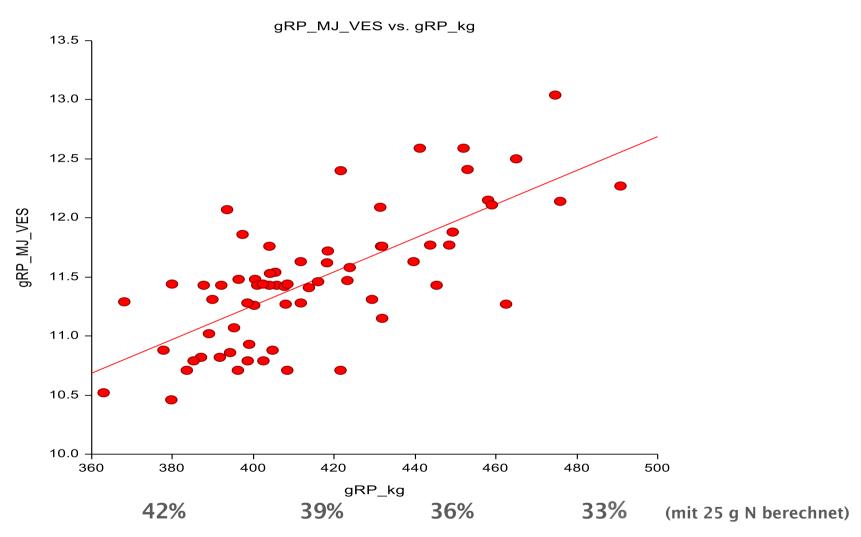
Rationen: 158, 142 g (und 122 g) RP

für Eber (+ 5 RP und AS-Gehalte)

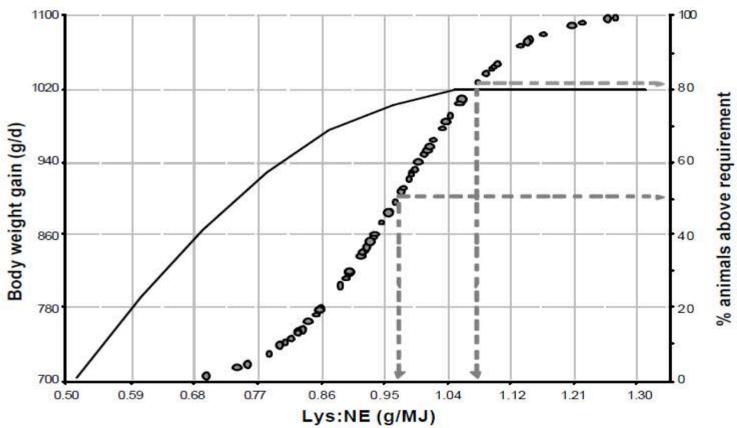
Parameter

- > Mastleistung
 - Zunahmen
 - Futteraufnahme
 - FV
- > Schlachtleistung
 - AwF
- > Schlachtkörperzusammensetzung
 - N-Gehalt
 - Fettgehalt
 - Mineralstoffgehalt

Moderne CH-Genetik bringt auch bei sehr tiefer AS-Versorgung gute AwF

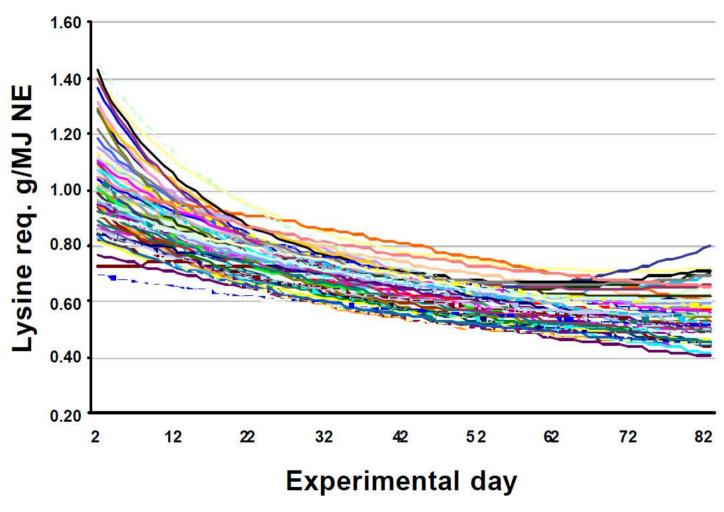

AS Gehalte	Geschlecht	MTZ* (g/ d)	FV* (kg/ kg)	Verzehr* (kg/d)	AwF %**
	Eber	958 a	2.38 b	2.27 abc	57.54 b
Kontrolle	ntrolle Sauen		2.53 b	2.26 abc	57.37 b
	Kastraten	967 a	2.56 b	2.49 bc	56.54ab
	Eber	874 ab	2.49 b	2.19 ac	56.01ab
Reduziert	Sauen	765 b	2.87 a	2.19 a	57.35 b
	Kastraten	907 a	2.76 a	2.51 b	55.30 a
RSE		91.05	0.161	0.220	1.607
P-Wert	AS Gehalt	<0.001	<0.001	0.779	0.003
	Geschlecht	<0.001	<0.001	<0.001	0.001

Durchschnittliche N-Effizienz von 47.4%

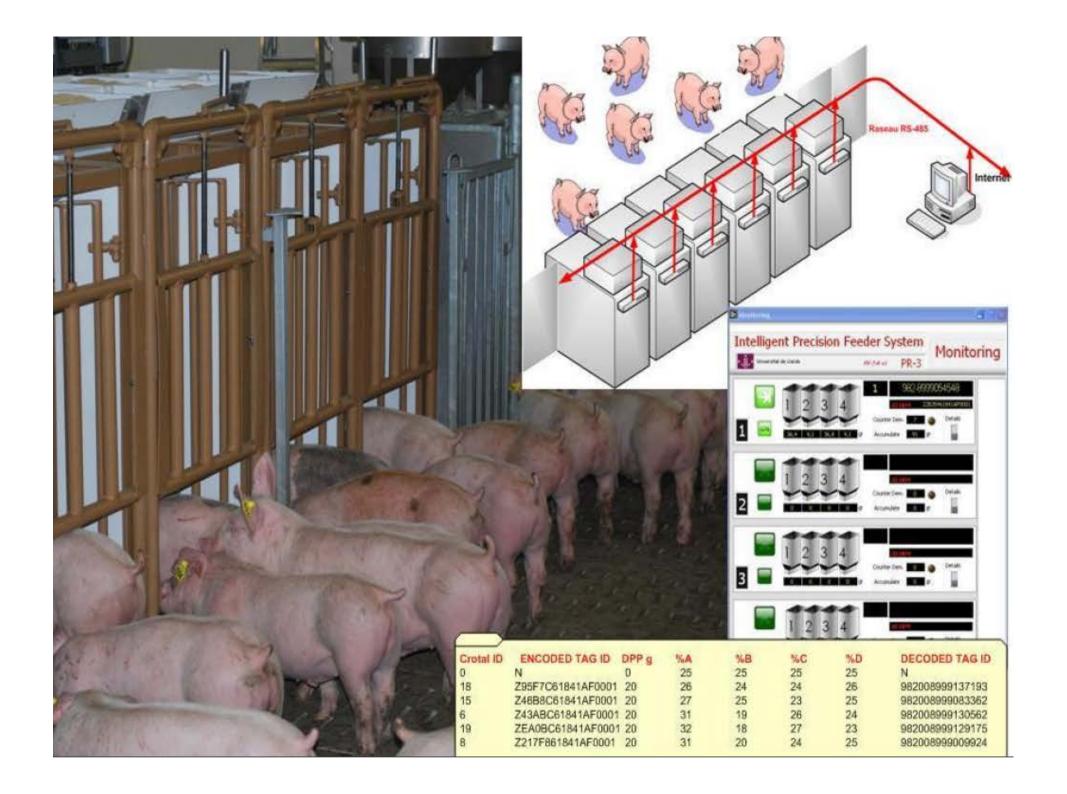

Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Quelle: Agroscope-Versuch, 2014

Zusammenhang N-Effizienz und Rohproteingehalt der Ration



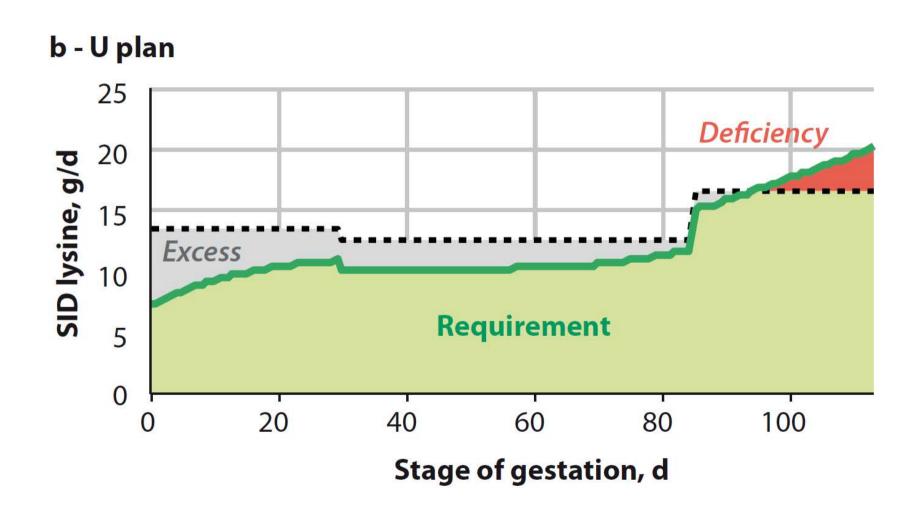
Jedes Leistungsgruppe braucht sein eigenes RP/Lys zu Energie Verhältnis


Cumulative distribution of requirements estimated by the factorial method and effect of different Lys:NE ratios on weight gain estimated by the empirical method for a LW from 24 to 54 kg

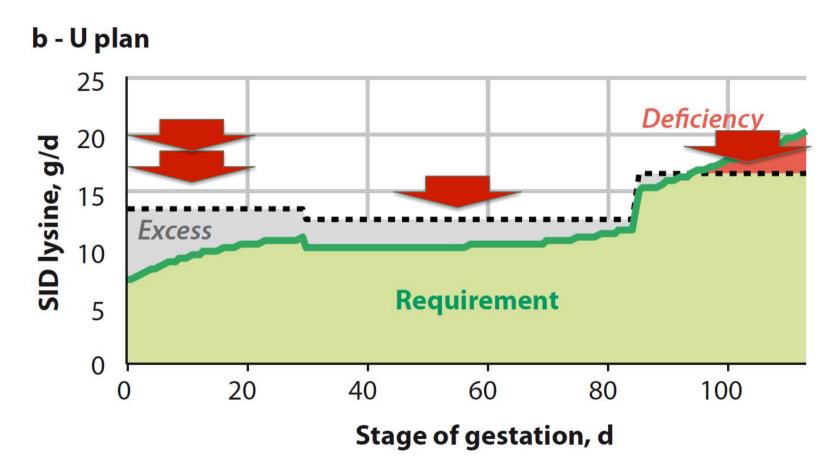
Estimation of individual daily lysine requirements (in g/MJ NE) in growing-finishing pigs.

Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

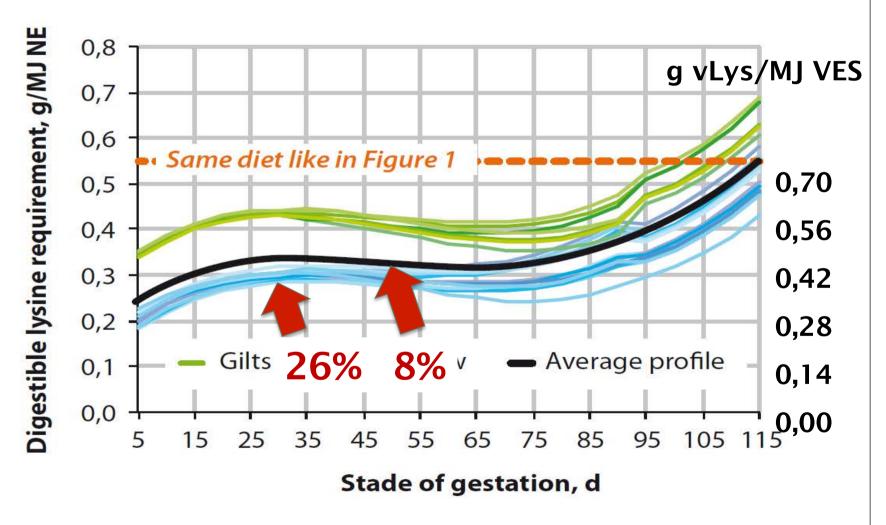
R. Bras. Zootec., v.38, p.226-237, 2009



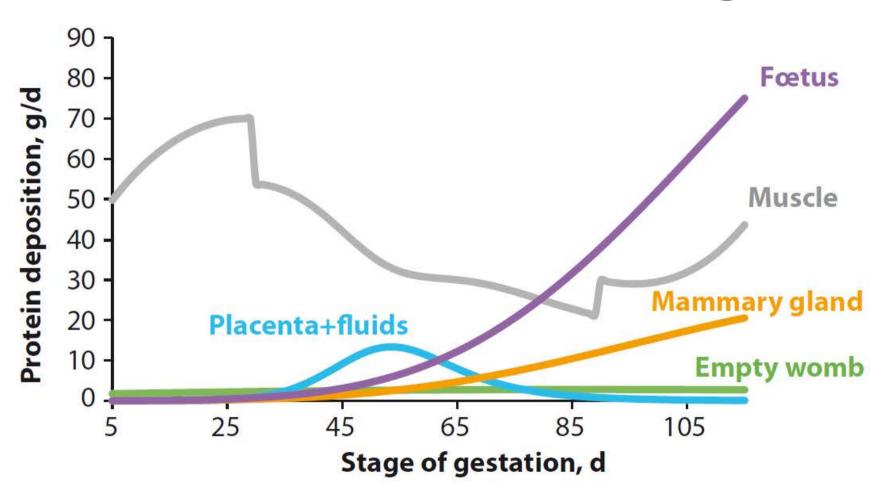
Galtsauenfutter


Galtsauen		VES_MJ/kg	RP_g/kg	Lys_g/kg	P_g/kg	RP g / MJ VES	Lys g / MJ VES	Pg/ MJ VES
Bio (n=1)	X	12.1	161			13.31		
Standard	x	12.05	144.97	6.54	6.05	12.06	0.54	0.50
(inkl. Label)	min	9.5	130.0	5.7	5.0	10.7	0.48	0.41
(n=33)	max	12.6	168.0	9.0	7.0	15.8	0.72	0.65
NPr	x	12.26	139.12	6.67	4.41	11.36	0.54	0.36
(n=74)	min	11.0	125.0	5.7	3.9	9.84	0.48	0.30
(11-74)	max	13.6	160.0	9.4	5.0	13.9	0.72	0.47
Kombifutte	r							
Bio	x	12.86	175.71	9.28	5.80	13.65	0.72	0.45
(n=7) m	min	12.0	150.0	7.5	5.5	12.50	0.63	0.42
(n=7)	max	13.0	180.0	10.0	6.0	13.85	0.77	0.46

Schätzung des Lysinsbedarfs für Galtsauen mittels faktorieller Methode

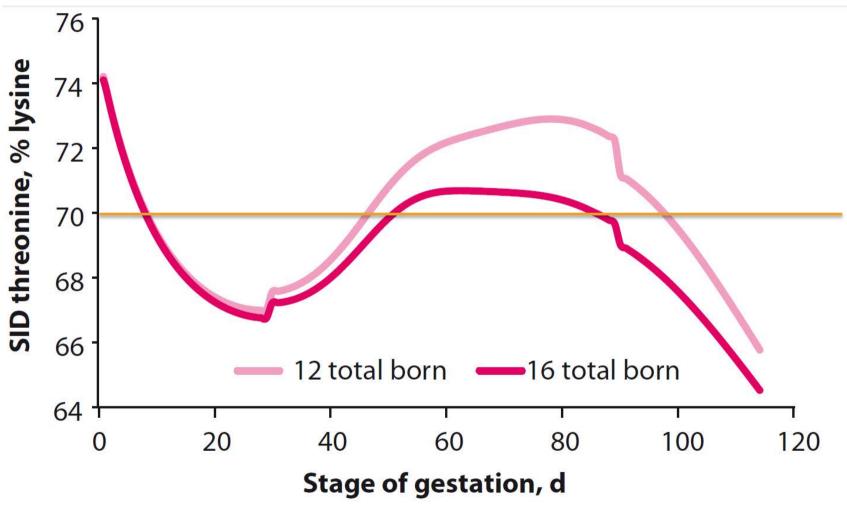

Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Wo liegen unsere Futter auf dieser Kurve? (6.7 g Lys/kg entspricht zirka 5.3 g vLys/kg)


Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Einsparpotential

Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL


Proteinansatzrate in unterschiedlichen Bereichen während der Trächtigkeit

Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFI es Cahiers de l'IFIP - Vol 2- n° 2 - 2015

Dourmad et al., 1997 and NRC, 2012)

Das ideale Protein ändert sich im Verlaufe der Trächtigkeit

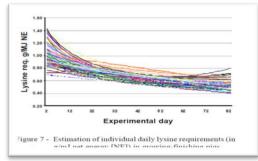
Berner Fachhochschule | Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Lysin- und Threoninbedarf (total) von Galtsauen

		1 st parity	2 nd parity	3 rd parity
Lysine	Early gestation	15.0	13.1	8.1
	Late gestation	18.0	18.4	13.0
Threonine	Early gestation	n/a ³	7.0	5.0
	Late gestation	n/a	13.6	12.3
Threonine: lysine ratio	Early gestation	n/a	53	62
	Late gestation	n/a	74	95

¹Srichana (2006) for 1st parity, Samuel et al. (2010) for 2nd and 3rd parity

Thr: Lys gemäss Gelbem Buch: 70


² Levesque et al. (2011a); ³ not available

Zusammenfassung

Effizientere Tiere

- Genetik
- Tiergesundheit

Genauer am Bedarf füttern

- Phasenfütterung
- Weitere N-Reduktion

Nebenprodukte und Gastrosuppe wieder veredeln ?!

Trotz Fokus auf Proteineffizienz das Gesamtsystem nicht aus den Augen verlieren.

