Result

Conclusion

Reference

GenMon: a Web-GIS platform for the monitoring of farm animal genetic resources in Switzerland

Solange Duruz¹, Christine Flury², Stéphane Joost¹

¹ Laboratory of Geographic Information System (LASIG), Ecole Polytechnique Fédérale de Lausanne (EPFL)

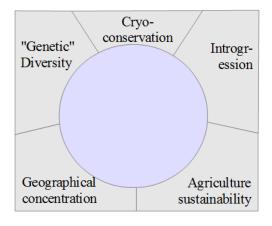
² School of Agricultural, Forest and Food Sciences, Zollikofen, Switzerland

Result

Demo

Conclusio

Reference


Context

- Loss of genetic diversity in Farm Animal
- FAO protocol (2007): monitor genetic diversity of farm animal
- Need for a tool to identify endangered breed
 - \rightarrow Development of **GenMon**, a Web-GIS application

Criteria

Agric sus-

Criteria to consider?

ntroducti

....

Criteria

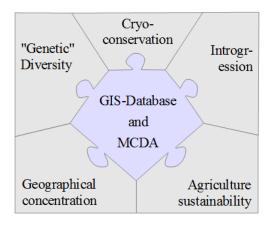
Pedigree

Cryo-

Introgression

Geography

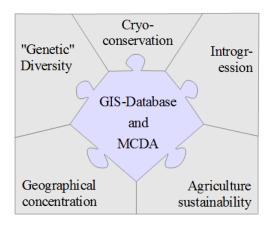
Agric sustainability


_

Б.

Conclusio

Deference


Criteria to consider?

Criteria

Agric sus-

Criteria to consider?

Goal: build **global index** integrating all 4 criteria

Demo

Conclusio

Reference

Pedigree analysis

- Consider:
 - Total number of animals
 - Trend number of animals
 - Inbreeding coefficient
 - Effective size of the population (N_e)
 - Pedigree completeness
- PopRep from Institute of Farm Animal Genetics (FLI) (Groeneveld et al., 2009)
- Future improvement: inbreeding on DNA-analysis

Agric sus tainabilit Aggregat

Data

Kesult

Conclusio

References

Cryo-conservation

- → Restore genetic diversity after severe event
- Consider:
 - Are there frozen semen?
 - Is there a true cryo-conservation plan?
- Entered directly by the user

Result

Demo

Conclusio

Reference

Introgression

- ullet \rightarrow avoid mixing of traits
- Consider:
 - Mean introgression rate
- Entered directly by the user

Geography
Agric sustainability
Aggregation

Data

Conclusion

Geographic concentration

- \bullet \rightarrow Important to restrict the spread of diseases
- Consider:
 - Smallest circle containing at least 75% of animals, centered around the centre of mass of the breed (Alderson, 2010)
- Computed from PLZ of animals (GIS analysis)

Centre of mass

tainability Aggregatio

Data

nesur

Conclusion

References

Agriculture sustainability

- $\bullet \to {\rm Assess}$ the sustainability of agriculture where studied population is bred
- Consider:
 - Socio-Economic Criteria (demographic balance, % young and old)
 - Relative importance of agriculture (% farmer and evolution, % surface for grazing)
 - Projected landuse (Price et al., 2013)
 - Evolution number of farms
 - Cultural value and its evolution
- Statistics available at the commune level and info of the breed

tainability Aggregation

Data

rtesur

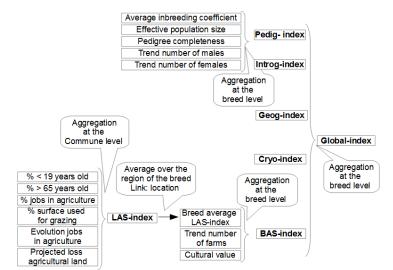
Demo

Conclusio

Reference

Criteria Aggregation

- Data integration: Link through Geography → Need of GIS-analysis
- Aggregation using MCDA-technique: MACBETH (Costa et al., 1994)
 - Weighted average
 - using satisfaction thresholds
 - \rightarrow Expert-based approach


Method
Criteria
Pedigree
Cryoconservation
Introgression
Geography
Agric sustainability

Aggregation

_ .

Canalusia

References

Agric sus tainabilit Aggregati

Data

resur

Demo

Conclusio:

Reference

Data

- Animal information
 - Pedigree info
 - Introgression
 - Geographic location (Postal Code)

```
animal_ID; sire_ID; dam_id; birth; sex; plz; intro; inb; cryo_cons
73400; 70335; 358651; 1951; m; 3057; 0;; 0
398242; 16590; 7756462; 1994; F; 1971; 0.1;; 0
```

- Stats (Socio-Economic/Enviro) at the commune level
- Shapefile of Communes and Postal Code

Results

Ranking of breeds

			pedig- index		_	_		$\begin{array}{c} Global \\ index \end{array}$
SN	0.10	50- 70	0.44	0	0	[13.02	0.6	0.43
FM	0.06	50- 70	0.41	0	0.11	58	0.6	0.51
BVO	0.03	70- 100	0.65	1	0	59	0.6	0.79

Method

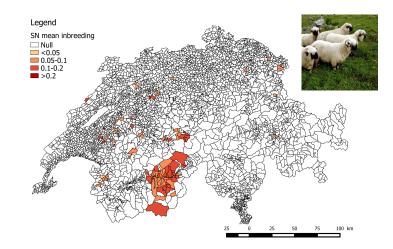
Criteria Pedigree

Cryo-

onservation Introgression Geography

Agric sustainability

Data


Results

Demo

Conclusio

References

Mean Inbreeding Blacknose sheep

Aggregation

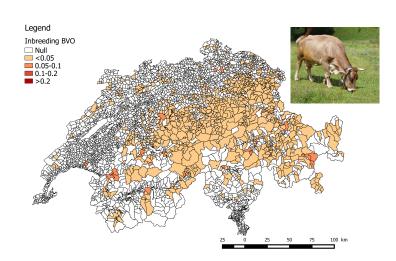
Data

Results

Demo

Conclusio

Reference


Ranking of breeds

		-	pedig- index					
SN	0.10	50- 70	0.44	0	0	13.02	0.6	0.43
FM	0.06	50- 70	0.41	0	0.11	58	0.6	0.51
BVO	0.03	70- 100	0.65	1	0	59	0.6	0.79

Agric sus-tainability

Results

Mean Inbreeding Original Braunvieh cows

Pedigree Cryoconservation Introgression Geography Agric sustainability Aggregation

Data

Demo

Conclusion

Reference

 ${\tt lasigsrv2.epfl.ch/genmon-ch}$

nesur

Conclusion

References

Conclusion

- Easy-to-use Web-GIS application
- Integration of various criteria
- Ranking of endangered breed + Identification of problems
- Maps available
- **Geography** needed for:
 - Link/Integration of different data types
 - Calculate geographical concentration

rtesur

References

- Alderson, L. (2010). Breeds at risk. In *Criteria and classification. report from a seminar* (pp. 16–17).
- Costa, E., Bana, C. A., & Vansnick, J.-C. (1994).

 Macbeth an interactive path towards the construction of cardinal value functions.

 International transactions in operational Research, 1(4), 489–500.
- Groeneveld, E., Westhuizen, B., Maiwashe, A., Voordewind, F., Ferraz, J., et al. (2009). Poprep: a generic report for population management. Genetics and Molecular Research, 8(3), 1158–1178.
- Price, B., Kienast, F., Seidl, I., Verbrug, P., Ginzler, C., & Bolliger, J. (2013). Spatially explicit modelling of land-use suitability and future land-use pattern for switzerland. In Abstract volume, 11th geoscience meeting computational giscience.