
Identification of Genetic Variants Associated with Conformation Traits in Swiss Dairy Cattle

UNIVERSITÄT

Phenotyping

GWAS

(HD pannel)

additive,

recessive and

dominant

models

Fine-mapping

(WGS imputed

SNPs)

Candidate

variant

prioritization

Stefan Vasiljevic¹, Franz Seefried², Sarah Widmer², Naveen Kumar Kadri³, Quiongyu He³, Hubert Pausch³, Cord Drögemüller¹, Joana Jacinto^{1,4}

¹Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland; ²Qualitas AG, Zug, Switzerland; ³Institute of Agricultural Sciences, Animal Genomics, ETH Zürich, Switzerland; ⁴Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Switzerland

Background

Hoof and leg conformation traits influence health, welfare, longevity, and productivity in dairy cattle.

Objective

To estimate heritabilities (h^2) and to identify candidate variants of hoof and leg conformation traits in Holstein (HO) and Brown Swiss (BS)

Material and Methods

- Sample size and phenotypes: HO = 21,535; BS = 15,724; leg and hoof conformation corrected scores
- Genotypic data: Imputed to WGS SNPs
- h^2 : Estimated with GCTA-REML on HD SNP panel (~777k SNPs)
- GWAS: GCTA-MLMA (additive, recessive, dominant models) with HD panel; suggestive threshold $P < 5 \times 10^{-6}$
- Fine-mapping: on chromosomes harboring suggestive QTLs using a second MLMA with WGS imputed SNPs, P<5×10⁻⁸
- Candidate variant prioritization: 95% credible sets; variants filtered for LD with lead SNP: R² ≥ 0.75, MAF ≥ 0.01, gene function

Results

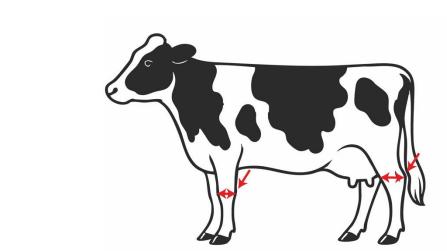
• h²: For HO, values ranged from 0.10 (LOC) to 0.28 (BST); for BS, from 0.10 (DHE) to 0.26 (HQU) (Table 1)

Table 1: Estimated h^2 of the hoof and leg conformation traits studied.

		НО	BS		
Trait	h²	SE	h²	SE	
BST	0.28	0.01	-	-	
RLR	0.21	0.009	_	_	
RLS	0.24	0.009	_	_	
DHE	0.13	0.008	0.1	0.009	
FAN	0.14	0.008	0.14	0.01	
LOC	0.1	0.007	-	-	
HQU	-	-	0.26	0.01	
RLV	-	-	0.21	0.01	

BST = bone structure; RLR = rear leg rear view; RLS = rear leg set; DHE = deep heel; FAN = foot angle; LOC = locomotion; HQU = hock quality; RLV = rear leg side view HO = Holstein; BS = **Brown Swiss**

Significant regions: 26 QTLs were identified, including 16 in HO (7 additive, 7 dominant, 2 recessive) and 10 in BS (6 additive, 4 dominant). Among these, 10 QTLs harbored candidate variants.


Table 2: Candidate variants from additive and non-additive GWAS.

Trait	Breed	Model	Chr	P-log	Variant type	Gene
LOC	НО	additive	5	8.26	intronic	CACNA1C
LOC	НО	additive	11	14.13	missense	GCC2
BST	НО	recessive	22	16.78	stop gained	HYAL1
DHE	BS	additive	13	7.7	synonymous	TPX2
DHE	BS	additive	25	9.69	upstream	ABCA3
HQU	BS	additive	3	7.26	intronic	NDUFA10
HQU	BS	additive	25	7.01	synonymous	CLCN7
HQU	BS	additive	26	7.84	missense	FGF8
HQU	BS	dominant	6	10.26	intronic	ANKRD17
HQU	BS	additive	18	7.17	frameshift	RIPOR1

P-log = -log of 10 of the P-value ; BST = Bone Structure ; LOC = Locomotion ; HQU = hock quality; DHE =

deep heel; HO = Holstein; BS = Brown Swiss

Workflow of bone structure (BST) in HO

Figure 1: BST phenotype in HO, with scores from 1 (wide) to 9 (narrow)

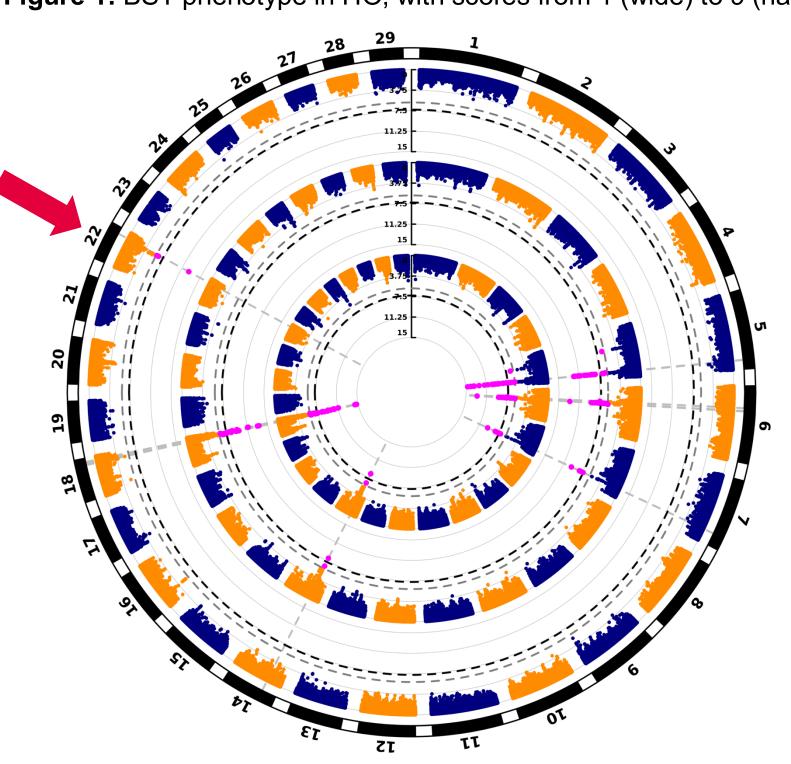


Figure 2: Circular Manhattan plot of GWAS for BST in HO for recessive (outer), dominant (middle), and additive (inner) models

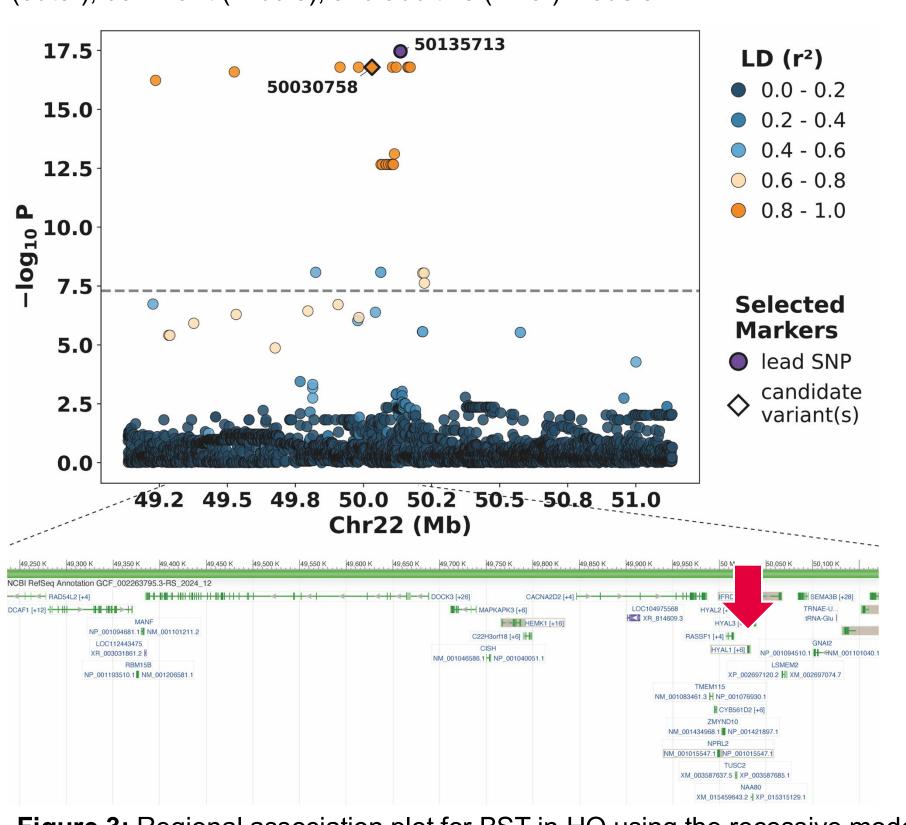


Figure 3: Regional association plot for BST in HO using the recessive model

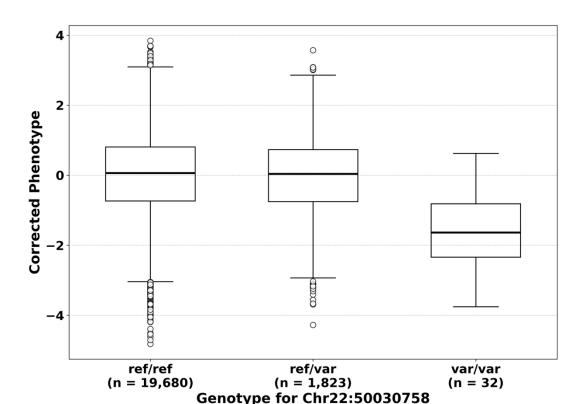


Figure 4: Corrected BST phenotypes by genotype at HYAL1 variant in HO

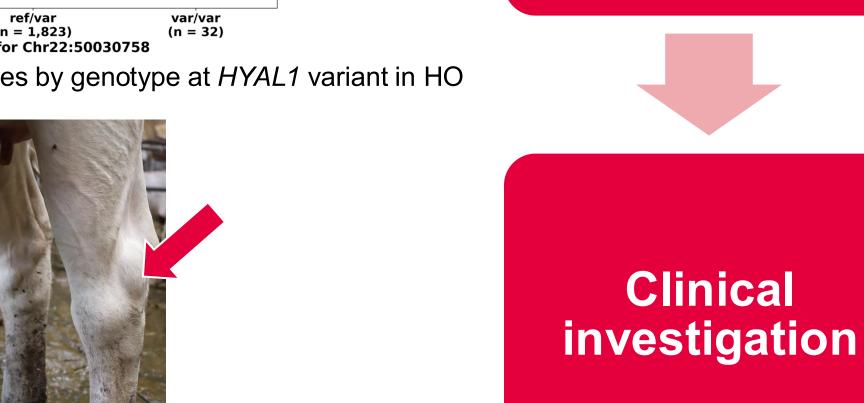


Figure 5: HO cow homozygous for the alternative HYAL1 allele showing tarsal synovitis

Outlook and conclusion

- h²: Moderate to low
- Plausible candidate genes: HYAL1, HDAC4, CACNA1C and CLCN7, linked to skeletal and limb development
- HO homozygous for the *HYAL* show polysynovitis in the limb joints.

Acknowledgments:

