Implementation of genomic prediction
in routine genetic evaluations:
state of the art in different species,
pitfalls, future developments



Performance of the Progeny
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Offspring of one sire exhibit +10 kg

more than % diversity of P A\
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the entire population ge y +10 kg




We learn about parents from progeny

+30 kg

+15 kg

-10 kg
+ 5 kg

L] +10Kg
(EBV is “shrunk”) FEaasts
Sire EBV +16-18 kg <= Progeny +10 kg

<2x progeny difference




Pedigree Prediction

y - Xb + Zu + e Single trait mixed effects linear model
var(u) = G = Ao, var(e) =R = Ilo?

NN

NN

XX Xz |b] X'y]
Z’X ZZ+ A" u | 2y

2
= pedigree based numerator relationship matrix A = 0%52

Henderson 1949 (Phd), Henderson et al, 1959 Biometrics 15:192




A common error is the
substitution of one base pair
for another
Single Nucleotide Polymorphism

Errors in duplication

- Most are repaired

- Some will be transmitted

- Some of those may influence performance
- Some will be beneficial, others harmful

Inspection of whole genome sequence
- Demonstrate historical errors
- And occasional new (de novo) mutations



Breeding Merit is sum of average gene effects
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i HE ) Wl Sum=+2
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EBV=10

. Blue base pairs represent genes/exons



Consider 3 Bulls
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R ' - EBV= 2

Below-average bulls will have some above-average alleles and vice versa!



At any 1 locus there are 3 genotypes

Qq Contribution

of this QTL




Regress BV on QTL genotype

QTL=Quantitative Trait Locus

Variation due to
other genes

True Breeding Value

Slope=average effect of allele

qq Qq QQ



lllumina Bovine 770k, 50k (v2), 3k

LDLEEETIRREE B |

700k (HD) 50k (Several versions) 3k (LD)



SNP Genotyping the Bulls

1 of 50,000 loci=50k
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Linkage Disequilibrium (LD)
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Practice — EBV on SNP

True Breeding Value

Use SNP genotypes at locus 1 (in high LD) as surrogates for QTL

A1A A.B, B,B,



Practice — EBV on SNP
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Use SNP genotypes at locus 2 (in low LD) as surrogates for QTL
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B,B,

A,B,
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www.23andme.com

Health Risks

“randne Alzheimer's Disease

Decreased Risk
NAME CONFIDENCE YOUR RISK AVG. RISK COMPARED TO AVERAGE

Alzheimer's Disease ) 8. 8 & ¢ 4.9% 7.2% 0.69x H

Marker Effects

Your Data How It Works Technical Report Community (162) 2.fold
Increased Risk

Technical Report

Gene or region: APOE

Dorian Garrick rs7412 £3/€3 European: 0.67
rs429358 TT

AFbt

Only significant, validated GWAS findings used in prediction Dacrassad Mk



www.23andme.com

* Coronary Heart Disease

Marker Effects
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Each bar represents a different risk QTL allele
(mouseover shows the allele and links to the research publications)
QTL=Quantitative Trait Locus

Only significant, validated GWAS findings used in prediction

39-56 %
Attributable to
Genetics

Dorian Garrick
55.0 out of 100

men of European ethnicity who
share Dorian Garrick's genotype
will develop Coronary Heart
Disease between the ages of

45 and 79.

Average

46.8 out of 100

men of European ethnicity will
develop Coronary Heart Disease
between the ages of 45 and 79.



Plant & Animal Perspective

* Typically more SNP loci than subjects

 Landmark concepts were suggested by
Meuwissen, Hayes & Goddard (2001)

— Could simply fit all the SNP together (regardless of
“significance”) by treating as random effects
* They referred to these methods as “BLUP” or “BayesA”
— Or use a variable selection model to fit as random
effects some subset of the most informative SNP
* They proposed a method called “BayesB”



Genomic Prediction

y — Xb + MS + e Like Ridge Regression
XX XM l b _lX'yl
M'X MM+ |5 |~

M'y
I/i — M S Regardless of “significance” of s-hat

These equations have order = number of SNP+means and are dense

Meuwissen, Hayes & Goddard (2001)




Theoretical Basis for Accuracy

097 Heritability=0.8
08- —
N.=100
like Holsteins & Jerseys

07

0.6

0.5

1,000 training animals
04+ / r=0.43 20% genetic variance

03 //

0.2—// e 3,000 training animals

e r=0.6 36% genetic variance

S
1

Predictive Ability

0

> 2000 4000 6000 8000 10000 1000 1000 16000 18000 20000
Size of Training Population  codcard & Hayes (Nature Reviews Genetics, 2009)
Reliable prediction requires large training populations
of genotyped and phenotyped individuals
Predictive Ability = Accuracy (r) = correlation true & predicted merit



Corr(g,ghat)

Accuracy of Genomic Prediction

o _
Validation in Offsprlng Correlation(g,g-hat)
o _ Early Selection
Layers

© |
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Conventional
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relationships
N |
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—— PBLUP

o |
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PD PS YW AH E3 EW co 3 Wolc et al 2010 S9WCGALP



Corr(g,ghat)

Accuracy of Genomic Prediction

Q
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Validation in Offspring

Correlation(g,g-hat)
Early Selection
Layers

Superiority
o 1 of prediction
using
genomic relationships
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— PBLUP
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Corr(g,ghat)

Accuracy of Genomic Prediction

o _
Validation in Offspring Correlation(g g-hat)
S - Early Selection
Layers
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© Extent genomic
prediction
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Layer Hens — Dekkers scheme

Strategy Traditional

Male Female

H#Hcandidates with

1000 3000
phenotype
# selected 60 360
Generation interval
13

(months)

Information Own Phenotype




Layer Hens — Dekkers scheme

Strategy Traditional GS

Male Female Male Female

H#Hcandidates with

1000 3000 300 300
phenotype
# selected 60 360
Generation
13
interval (months)
Information Own Phenotype Genotype+Phenotype

Halve the generation interval and reduce costs by (less phenotyping)
to get same gain & same inbreeding



Selection Response - Difference between the lines

100
B H2009 (founder population) Better for 14 of 16 traits
90 H2011 (conventional)
W X2011 (Genomic)
80 I
70 I
) I I I I I
) I I I I I I
40 -
E3 eEW IEW C3 eCO ICO eEN IEN

After 3 generations of conventional or 6 gens of genomic selection

Genomic selection was as good, if not better in terms of realized response



Predictions in Beef Cattle Breeds

RedAngus Hereford | Simmental | Limousin | Gelbvieh

Trait (6,412) (2,980) (2,800) (2,400) (1,321)+
BirthWt 0.75 0.64 0.68 0.65 0.58 0.62
WeanWt 0.67 0.67 0.52 0.52 0.58 0.52
YigWt 0.69 0.75 0.60 0.45 0.76 0.53
Milk 0.51 0.51 0.37 0.34 0.46 0.39
Fat 0.90 0.70 0.48 0.29 0.75
REA 0.75 0.75 0.49 0.59 0.63 0.61
Marbling 0.85 0.80 0.43 0.63 0.65 0.87
CED 0.60 0.69 0.68 0.45 0.52 0.47
CEM 0.32 0.73 0.51 0.32 0.51 0.62

SC 0.71 0.43 0.45

Average 0.67 0.69 0.52 0.47 0.57 0.56

Genetic correlations from k-fold validation Saatchi et al (GSE, 2011; 2012; J Anim Sc, 2013)



PA+DYD better than DYD

Train PA+DYD DYD

Validate DYD DYD

Nellore (BWT) (1206) 0.71 0.58
Nellore (BWT) (791) 0.51 0.45
Brangus (BWT) 0.65 0.61
Brngus (WWT) 0.52 0.45
0.60 0.52

36% 27%



GGP-HD better than 50k

Train PA+DYD PA+DYD DYD Current
Validate DYD DYD DYD NextGen GeneSeek
Training Size 10,000 10,000 3,000
Panel New50K NewGGP_HD OIld50k Variance Variance
bw 0.83 0.86 0.68 74% 46%
ced DNC 0.84 0.68 71% 46%
cem 0.46 0.55 0.51 30% 26%
fat 0.32 0.38 0.48 14% 23%
mcw 0.77 0.80 0.64 64% 41%
milk 0.47 0.50 0.37 25% 14%
mrb 0.64 0.71 0.43 50% 18%
rea 0.58 0.58 0.49 34% 24%
SC 0.58 0.60 0.43 36% 18%
ww 0.64 0.67 0.52 45% 27%
yw 0.71 0.75 0.60 56% 36%

0.60 0.66 0.53 0.45 0.29

DNC=did not converge



Blending

Use DGV along with EBV in selection index
Use DGV as a correlated trait

Use DGV as “external EBV”
— Same concept as using interbull EBV in local

Combine genotyped and nongenotyped
— Known as “Single Step”



Blending is a Selection Index Problem

Blended_EPD = mean + b,EBV+b,DGV

* Need to determine the weights (b, and b,) to
combine the information sources

— Based on variance-covariance assumptions

 And determine the accuracy of the blended EPD
which must be greater than either of the
component EPDs



Selection Index Assumptions

Pb=g¢
u . r,ra |7
var|m |=|rirk i ||rifo?
U ro r. 1
u—u |_ 1 —r; (1=7)(1—77)
MN—m] la-m) -1 1—72




Blending

—~_(1=7) (u,— ) + (1 —a*) (m — )
o 1—7ra’
2 o
Rel, =1 (1 7“)(21 20’)
1—7r"a

where u, is the previous national EBV with Rel, = a
and m is the MBV (DGV) with genetic correlation r’



blended Accuracy

1.0

0.8

0.6

0.4

0.2

0.0

Impact on Accuracy--%GV=10%

Genetic correlation=0.3

Pedigree and
genomic

Pedigree only

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

EBV Accuracy
Blending will not improve the accuracy of a bull that already has a reliable EBV



blended Accuracy

1.0

0.8

0.6

0.4

0.2

0.0

Impact on Accuracy--%GV=40%

Genetic correlation=0.64

. Pedigree and
genomic

Pedigree only

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

EBV Accuracy

Blended EBVs are equally likely to be better or worse than the preblended EBVs



Properties of BLUP (1 of 2)

* Provided the model is correct:

7)) — 7\ Quantify from inverse MME
COV(M, l/l) Var(l/t) Or approximate from MME

e Then

B - cov(u,u)
U var(d)

Although Elu]l=0, Elu/u]l=u

=1 (exactly)



Properties of BLUP (2 of 2)

* Provided the model is correct:

e Then

cov(u,u) = var(u)

cov(u, i) var(u)
r

i Jvar(it) var(u) _\ var(u)

e And

var(it) = r” var(u)



Diagnostics of Good Behavior

* Regression of more accurate (blended) on less
accurate (EBV or MBV) should be 1

e Correlation of less accurate EBV with change
in EBV (from less accurate to more accurate)

should be zero



Blended EBV - National EBV

Blended EBV

Validation of Breedplan Blending
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Validation of Birth Weight
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Blended EBV - National EBV

Blended EBV

Inflation of EBV/MBYV covariance

0 2 4 6

4

20

10

-10

o 5 10

National EBV

SLOPE=1

I
15

20

o 5 10

National EBV

I
15

20

Blended EBV - MBV

Blended EBV

10

-5 0

-10

20

10

-10

CORR=0.07

(o) o o
(@)
O
I I I
-5 0 5
MBV
SLOPE=1.07

MBV




Genotypes vs Haplotypes

* Suppose an animal is
— heterozygous at locus 1 (genotype A,B,) and
— heterozygous at locus 2 (genotype A,B,)



Genotypes vs Haplotypes

* Suppose an animal is
— heterozygous at locus 1 (genotype A,B,) and
— heterozygous at locus 2 (genotype A,B,)

* |ts diplotype (pair of haplotypes) might be

— Either AA, and BB,
\ J
|

A, A,
BB

Alleles are in coupling




Genotypes vs Haplotypes

* Suppose an animal is
— heterozygous at locus 1 (genotype A,B,) and
— heterozygous at locus 2 (genotype A,B,)
* |ts diplotype (pair of haplotypes) might be
— Eithe\r A.A, and BB, ’or and
\ J
|

A, A, A, B,
. B B 8, A,

Alleles are in coupling Alleles are in repulsion




Many Potential Haplotypes

At 2 loci there are 4 possible haplotypes
_ ”AlAz”’ llAlBZH’ llBlAZH’ and (lBlBZH

At 3 loci there are 8 possible haplotypes
_ ”AAA”, HAAB”’ IIABA”’ HABB”’ IIBAAI)’ HBABH’ HBBA”’ IIBBBH

At k loci there are 2k possible haplotypes

At 20 loci (e.g. 1% or 1 Mb chromosome on 50k)
there are >1 million possible haplotypes

— In a population of <1 million they can’t all be present!



SNP Alleles are inherited in blocks

paternal Chromosome

- pair
maternal [




SNP Alleles are inherited in blocks

paternal

maternal [ —

Chromosome
- pair

—

Occasionally (30%) one or other chromosome is passed on intact

ee




SNP Alleles are inherited in blocks

paternal

Chromosome
o pair
maternal

Typically (40%) one crossover produces a new recombinant gamete _

Recombination
can occur
anywhere

" but there are

“hot” spots and

“cold” spots




SNP Alleles are inherited in blocks

paternal

maternal

e —
I |

Sometimes there may be two (20%) or more (10%) crossovers

Chromosome
pair

Never close
.. I cogether



SNP Alleles are inherited in blocks

paternal

maternal

—

Interestingly the number of crossovers varies between sires and is heritable

On
average
1 crossover
per
chromosome
per
generation

Chromosome
- pair

Possible
offspring
chromosome
inherited from
one parent




SNP Alleles are inherited in blocks

paternal Chromosome

pair
maternal

Consider a small window of say 1% chromosome (1 Mb)



SNP Alleles are inherited in blocks

paternal

Chromosome
- pair

maternal

—

Offspring mostly (99%) segregate blue or red (about 1% are admixed)

—

“Blue”
haplotype
-~ (egsires

paternal
chromosome)

“Red”
haplotype
- (egsires

maternal
chromosome)




SNP Alleles are inherited in blocks

paternal

Chromosome
- pair

maternal

—

Offspring mostly (99%) segregate blue or red (about 1% are admixed)

—

“Blue”
haplotype
-~ (egsires

paternal
chromosome)

“Red”
haplotype
- (egsires

maternal
chromosome)




Breeding Value

Regress BV on haplotype dosage

Use multiple regression

to simultaneously estimate
dosage of

all haplotypes (colours)

in every 1 Mb window

0 1 2 “blue” alleles
] ] I
] ] I



Few Haplotypes are Present

* |n Bos taurus breeds we seldom see more
than 30 common haplotypes in any 1Mb
chromosome region (i.e. 1% chromosome)

— Common haplotypes are those seen more often
than once every 50 individuals (= 1% frequency)

— On average there are 20 such common haplotypes

* We could assign these 20 “colours” like “blue”, “red”
etc to represent their ancestral origins in the breed

— We only need enough SNP to identify haplotypes



Prediction of Shorthorn
only from other Breeds

Aﬁgus B}angus Gelbvieh  Hereford Limousin Red Angus Simmental

Birth Weight 0.08 -0.05 0.09 0.23 0.18 0.40 0.37
Calving ease direct 0.05 -0.01 -0.16 0.17 0.15 0.23 0.30
Calving ease maternal  0.09 0.00 0.08 0.15 0.06 0.07
Carcass Weight 0.20 0.05 0.07 -0.10 0.23 0.20
Fat tickness 0.17 0.02 0.11 0.08 0.01
Milk 0.09 -0.04 0.16 -0.06 0.02 0.03 -0.06
Marbling 0.03 -0.04 0.11 -0.07 -0.08 0.09 0.17
Rib eye area 0.03 0.01 0.12 -0.07 -0.01 0.05 0.08
Weaning weight 0.12 -0.10 0.07 0.15 -0.02 0.15 0.09
Yearling weight 0.09 0.00 -0.08 0.14 0.02 0.13 0.13

Across breed prediction does not work if the breed is not in training

See also Kachman et al., 2013 GSE



Training on AANUSA

Trait Predict
AANUSA

BirthWt 0.64 0.27
WeanWt 0.67 0.28
YearlingWt 0.75 0.23
Fat 0.70 0.21
RibEye Area 0.75 0.29
Marbling 0.80 0.21
CalvEase (D) 0.69 0.14
CalvEase (M) 0.73 0.18
Average 0.71 0.23

Cannot predict US Red Angus (RANUSA) very well from US Black Angus (AANUSA)
There is some predictive power because RANUSA exhibit some AANUSA haplotypes



Predicting American Simmental

Single Breed Pooled Breeds

Birth weight

Calving ease direct
Calving ease maternal
Carcass weight
Docility

Fat thickness
Marbling

Rib eye muscle area
Shear force
Stayability

Weaning weight direct
Weaning wt maternal
Yield grade

Yearling weight

0.67
0.46
0.31
0.61
0.10
0.19
0.60
0.55
0.52
0.51
0.56
0.32
0.73
0.45

Average 22%

0.73
0.49
0.29
0.75
0.18
0.26
0.69
0.72
0.60
0.51
0.63
0.28
0.91
0.67

30% GV

Pooling uses
ASA multibreed DEBV
and not external data

Pooling breeds
does not typically

hurt predictions

and can provide
modest increases

Saatchi & Garrick, WSASAS 2013



Pooling Breeds (to Predict Brangus)

Birth Weight 0.82 0.83
Weaning Weight 0.66 0.65
Milk 0.51 0.44
Yearling Weight 0.70 0.69
Carcass Weight 0.64 0.63
Marbling IMF (U/S) 0.53 0.79
Fat (U/S) 0.53 0.52
Rib Eye Area (U/S 0.79 0.79
Scrotal Circumference 0.39 0.43
Average 0.62 0.64

Pooling breeds seldom improves accuracy in any one breed



Pooling Breeds

Single Breed Pooled Breeds does not typically

Fat thickness 0.54 0.45 hurt predictions
Marbling 0.75 0.58

Rib eye muscle area 0.68 0.57 (exception is for.LIM)
Yield grade 0.67 0.35 For meat quality

Average 0.66 0.49

Pooled breeds for LIM include AAN and RAN sires used in LIM database (LimFlex)

Have now genotyped the myostatin mutation to add the marker panel



Panel Comparison

Black = lllumina 50K




Panel Comparison

Black = lllumina 50K
Blue = lllumina HD (700K)



No longer using lllumina 50k~ PQ HEI Com Pa rison

Orange = GGP-Super LD 19k
Green = GGP-HD (taurus) 70k
Black = lllumina 50K

GGP also include custom SNP
50k and GGP-HD share 28K

50k and GGP-Super LD share 8k

Need to genotype more individuals/yr
Need cheaper genotyping

. . . |
Also a separate GGP-HD-| (Indicus) There are multiple minor variants of all these panels!



AHA Predictive Accuracy 2,980 6-fold

Lower Density Panels

Trait Actual Imputed
Birth Weight 0.67 0.65
Calving Ease Direct 0.68 0.67
Calving Ease Maternal 0.51 0.50
Fat Thickness 0.47 0.46
Marbling 0.42 0.42
Mature cow weight 0.64 0.62
Rib Eye Muscle Area 0.49 0.46
Scrotal Circumference 0.43 0.42
Weaning Weight Direct 0.53 0.50
Weaning Weight Maternal 0.37 0.35
Yearling Weight 0.61 0.59
Mean 0.53 0.51

Actual =50k
Imputed = 10k
(from GGP-LD)



Genomic Prediction Pipeline

Prediction | Equation

GeneSeek running the
~Beagle pipeline GGP to 50k then
applying prediction equation

Breeders

MBV and genotypes

Blend MBV & EPD



Current Genotype Counts
“mm-

13,409 16,054
BRG 1,128 173 243 1,544
BSH 325 136 461
CHA 1,617 525 2,142
GVH 186 209 1,643 371 414 430 3,253
HER 7,064 1,887 471 850 10,272
LIM 429 3,420 8 461 675 4,993
NEL 2,571 2,571
RAN 1,931 1,183 226 3,340
RDP 1,394 1,394
SIM 5,223 7,026 6,501 1,347 1,601 674 22,372

TOTALS 5,409 8,575 38,432 5,756 3,173 7,051 68,396



Major Regions for Birth Weight

Genetic Variance %

"G nb | s tertord | shorbon | o | simenis
7 93 7.10 5.85 0.01

0.02 0.18 0.02
6_38-39 0.47 8.48 11.63 5.90 16.3 4.75
20 4 3.70 7.99 1.19 0.07 1.53 0.03
14 24-26 0.42 0.01 0.01 0.71 3.05 8.14
Adding Haplotypes Imputed 700k
3.20% Collective 3 QTL
5.90% 30% GV

Some of these same regions have big effects on one or more of
weaning weight, yearling weight, marbling, ribeye area, calving ease



Sequence

* Now sequencing individual sires

— |Identify loss-of-function alleles to compare to
underrepresented haplotype alleles
— Identify mutations that are perfectly concordant

with haplotype allelic effect
* More powerful across breed



Genomic Prediction

* Exploits advances in quantitative genetics,
statistical genetics, computing, molecular
biology, and bioinformatics

* |s the basis for some aspects of personalized
medicine

* Will revolutionize plant and animal
improvement programmes, but to different
extents in different industries



Genomic Prediction

* |ts application in humans, plants and animals
is still an immature but maturing technology

— Need trait and population specific validation

— Cannot typically predict “unseen” populations

— Regression of performance on prediction not 1

— Reliability upwards biased in “distant” predictions

* Improving the accuracy of genomic prediction
will require collaborative efforts
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