Labelling haplotypes when genotypes are missing

C. Stricker

stricker@genetics-network.ch agn Genetics GmbH, Davos

Quick Reminder of Genomic Prediction

- 1k,... >>100k SNPs per animal
- ▶ 1k, ... 100k animals
- Meuwissen et al. (2001): Marker Effects Model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha} + \mathbf{e} \tag{1}$$

- y vector of trait phenotypes
- X incidence matrix relating non-genetic, fixed effects β to y
- Z matrix of SNP genotype covariates,
- $\blacktriangleright~\alpha$ vector of random, partial-regression coefficients for SNPs
- e is vector of residuals
- Bayesian alphabet is based on this model
- can show that BayesC π =0 is GBLUP (see below)

Quick Reminder of Genomic Prediction, cont.

Nejati-Javaremi et al. (1997): Animal Effect Model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e} \tag{2}$$

- y, $X\beta$, e as above in model (1)
- Z incidence matrix relating animal effects to y ,
- u vector of random animal effects
- Solutions usually by MMEs
- use $\mathbf{G} = \mathbf{Z}\mathbf{Z}'/2\sum pq$ instead of \mathbf{A}
- ▶ requires G⁻¹ (instead of A⁻¹)
- G is dense, cannot be inverted, when >50k animals genotyped....
- Legarra et al. (2009), Christensen & Lund (2010) combined A for ungenotyped animals with G for genotyped animals
- ▶ requires G⁻¹ and A⁻¹₂₂, dense and not easy!
- ► need alternatives when > 50k animals genotyped

Problems in Genomic Prediction

- growing number of genotyped animals >> 50'000
 - MEM using Bayesian regression applicable, but MCMC is CPU/Memory-intensive! 'Currently' only for genotyped animals
 - ssAEM unfeasible, due to \mathbf{G}^{-1}
 - ssMEM using the approach of Fernando et al. (2013)
 - MEM more efficient when n > k
- growing number of markers >> 50'000
 - single locus LD to causal mutations only for very high marker densities to be expected
 - increasing the marker density requires more data
 - highly redundant marker information
 - variable number of markers per genotyped animal, imputation to use available software. No additional information through imputing

 expensive variable reduction methods (Bayes B) applied to imputed data

- why haplotypes?
 - ▶ high single locus LD is not common in 54k/880K SNP arrays
 - the signal we pick up with GP is mostly cosegregation (multi-locus LD)
 - haplotypes pick up signal from LD and cosegregation, depending on segment size
 - \blacktriangleright haplotypes for small segments \rightarrow powerfull if strong single locus LD
 - ▶ haplotypes for large segments → powerful if cosegregation (within-family LD)
 - data reduction: 1 cM Intervall, 54K SNPs, about 10-20 haplotypes segregating, but >60'000 single locus allele combinations
 - most of these combinations do not exist in the data, additivity of marker effects assumed...

- Defining segment size
- Phasing of segment based on surrogacy, 'genetic' distance
 - calculate number of incompatible genotypes between individuals in given segment
 - for each animal (pivot), all compatible animals (distance small) are considered its surrogate offspring
 - find the two most distant offspring among the surrogates, apply k-medoids clustering to identify two clusters carrying the two haplotypes of the pivot animal
 - assign the label of the corresponding haplotype of the pivot to all surrogate offspring in a cluster

- each haplotype has a single cluster of surrogates, but an animal will be present in many pivots surrogate clusters
- recombination and mutation is noise, if haplotype is not passed onto offspring
- currently implemented for a single marker density, extension to missing markers (different densities) conceptually trivial
- no imputation: hapLabels are associated with a unique allelic state combination across all loci of a segment

 \blacktriangleright segment size can be a parameter in Gensel \rightarrow MPI

if imputation wanted, then

- establish haplotype labels through phasing above
- estimate allelic vectors corresponding to labels based on rules or regression haplotypes onto genotypes

- store allelic states for haplotypes in library
- join adjacent segments by overlapping
- haplotypes can be inferred based on different SNP densities
- (ss)MEM oder (ss)AEM

Example

segment size of 1 cM with 1000 Markers, Rec at 7, 8, 12

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Example

					4	T	6	7	R	9	10	(1	12	13	14	15	16
	0	76	135	135	0	126	123	0	77	139	127	0	0	125	123	127	0
	76	0	118	110	76	131	77	122	0	134	122	76	79	0	69	122	76
				125													
				0													130
4	0	76	132	0	0	138	127	133	79	140	124						0
				135						0	0			0			0
6	123	77	109	127	127	0	0	96	0	0	0	0	0	0		0	0
2	0	122	124	144	133	0	96	0	88	79					134	88	87
1	77	0	107	131	79	0	0	88	0	0	0	0	0	-	124	0	0
4	139	134	0	128	140	0	0	79	0				0	-	128	0	0
				0			0	88	0	0	0	0	-	-	129	0	0
	0	76	113	130	0	0	0	87	0	0	0	0	1000	-	121		0
	0	79	120	141	37	0	0	87	0	0	0	0		-	129	0	0
a	125	0	109	131	127	0	0	92		0	0	-	0		68	0	0
				131				134									121
				0				88	0	0	0	0	0	0	129	0	0
				130			0	87	0	0	0	0	0	0	121	0	0

<□ > < @ > < E > < E > E のQ @

Example

haplotypeLabels											
posInPedVec	hapID1	hapID2									
0	1	2									
1	10	12									
2	3	4									
3	5	6									
4	1	5									
5	7	8									
6	7	9									
7	2	8									
8	7	10									
9	3	7									
10	6	7									
11	1	7									
12	7	11									
13	7	12									
14	4	9									
15	6	7									
16	1	7									

Furutre directions

- ▶ fitting haplotypes instead of single marker covariables → data reduction, picks up signal from LD and cosegregation
- modelling LD (in the founder population) and cosegregation (from there onwards) explicitely, could be done with haplotypes

- ssMEM using haplotypes looks most promising
- ▶ efficient computing strategies become important with #markers↑ and #animals genotyped↑

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >