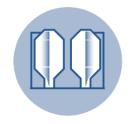
Futtereffizienz und Methan-Emissionen von Milchvieh; das kanadische Projekt

Christine F. Baes, Angela Cánovas, Mike Coffey, Erin E. Connor, Ellen Goddard, Birgit Gredler, Getu Hailu, Vern R. Osborne, Jennie Pryce, Mehdi Sargolzaei, Flavio Schenkel, Eileen Wall, Zhiquan Wang, Paul Stothard, Filippo Miglior

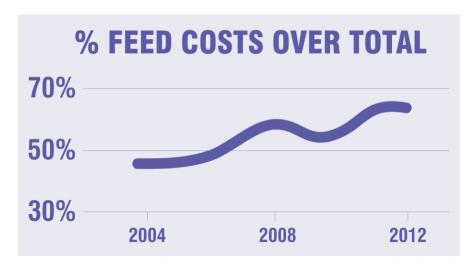
Adrien Butty

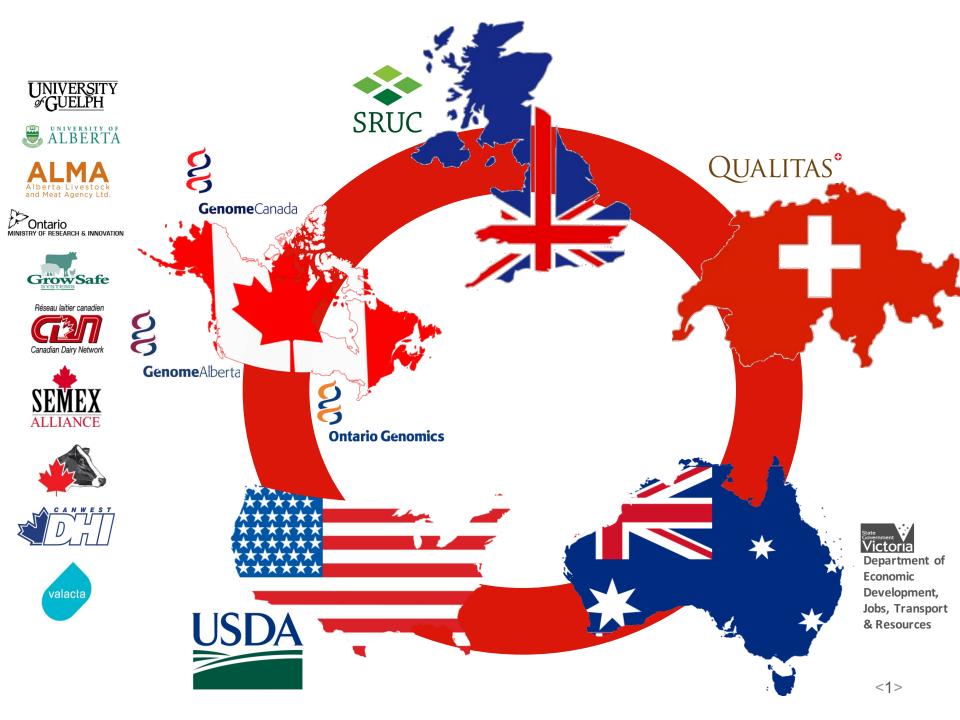
SABRE-TP 09.06.2016


Neue/aktuelle Trends

- Weltweit immer mehr
 Milchprodukte konsumiert
 (+238% in Asien in den
 letzten 30 Jahren)
- Umweltschädliche Effekte der Milchwirtschaft zunehmend angeprangert
- Futterkosten machen mehr als 50% der Betriebskosten aus

LARGEST EMITTERS IN AGRICULTURE




40% Enteric fermentation

16 % Manure left on pasture 7% Manure management

Das Projekt

- Genomische Methode nutzen, um futtereffiezientere Kühe zu züchten, welche weniger Methan produzieren
- In Kanada hat sich Genomik in der Rinderzucht schon bewährt aber...
- Hoch qualitative Phänotypen sind nötig
 - → Hier ist die Herausforderung!!! Die Lösung...
- Nationale und internationale Rinderpopulationen verlinken in Zusammenarbeit mit Partnern aus der ganzen Welt

Phänotypen: Futtereffizienz (FE)

- Verschiedene Methoden existieren um FE abzuleiten oder zu rechnen aber alle stützen sich auf Messungen der Futteraufnahme.
 - Trockensubstanzaufnahme, Gewicht und Milch Produktion/Zusammensetzung
- Residual feed intake (RFI) ist der Unterschied zwischen der gemessenen und der erwarteten TS-Aufnahme, wobei verschiedene Energieverbrauchsquellen miteinbezogen werden.
- Verschiedene Rechnungsmethoden werden in diesem Projekt verglichen.

Osbourne rch Station. Elora

Phänotypen: Methan Emissionen (ME)

Merkmaldefinition

- Methanproduktion (Absolute Methanmenge in Gramm pro Tag)
- Methanrate (Methanproduktion pro kg TS-Aufnahme)
- Methanintensität (Methanproduktion pro kg Produkt)

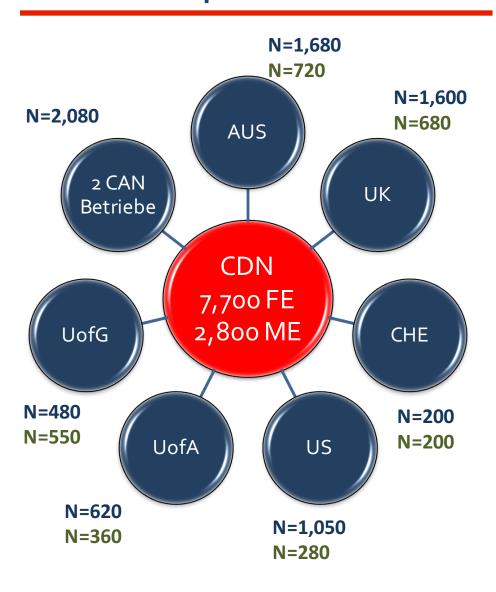
Methoden zur CH4 Messung

Respirationkammern ganztag, kontinuierlich

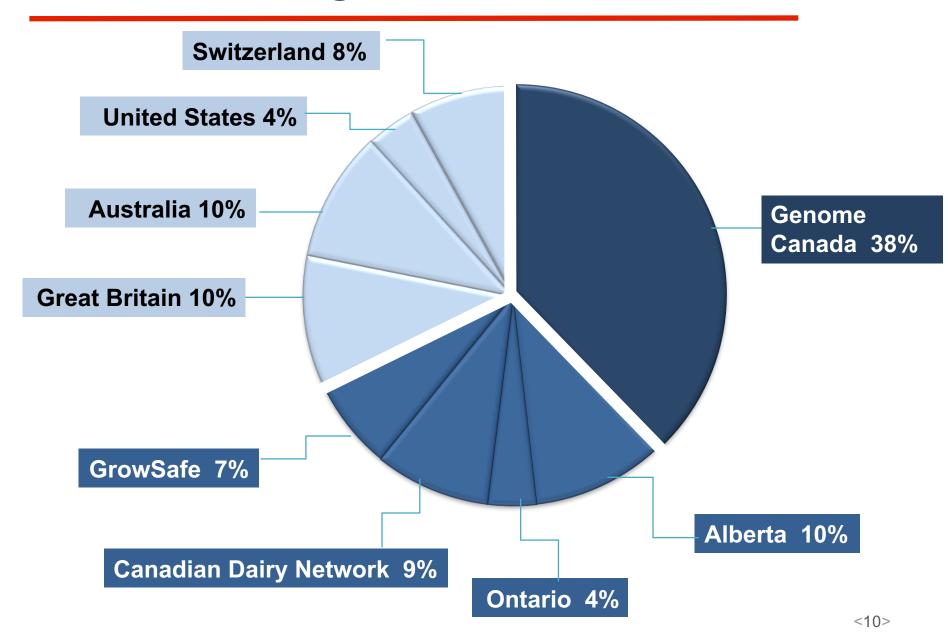
Schwefelhexafluorid (SF6)ganztag, hohe Variabilität

GreenFeeder während der Kraftfutteraufnahme

Laser kurze Messungen



Versuchsplan


- Aufbau einer Referenzpopulation mit Kühen für die SNP Effektschätzung von Futtereffizienz und Methan Emissionen
- Kontinuierlicher Austausch von SNP Effekten zwischen den Partnern
- Nutzung von MIR Daten zur FE & ME Schätzung.
- Genomische Zuchtwerte möglichst in allen Partnerländer für FE & ME
 - Inklusive additive wichtige SNP
 - Mehrmerkmalsmodel mit MIR geschätzte FE & ME

Aktivitäten	Jahr 1	Jahr 2	Jahr 3	Jahr 4
Ethische, ökologische, wirtschaftliche und gesellschaftliche Massnahmen	Soziale Vorteile und Kosten der Selektion für FE und ME			
	Konsumenten- und Produzenten-Akzeptanz sowie Nutzen dieser neuen Technologie			
Aufbau Datenbank	Futtereffizienz		7,700 Kühe	
	Methanemissionen 2,800 Kühe			
	Milch M	IR data	1,000,000 Kühe	
Genomik	Imputation & GWAS			
	Sequenz	Variant Discovery	_	Seq & al Studies
Umsetzung	Zuchtwertschätzung & Software-Entwicklung			
	Profit Index & Zuchtstrategien		Routine Publikation genomischer Zuchtwerte	

Konkrete Leistungen für die Endverbraucher

- Wöchentliche Veröffentlichung von genomischen Zuchtwerten bezüglich Futtereffizienz und Methanemissionen für Produzenten und Besamungsorganisationen
 - Neu identifizierte Mutationen oder Marker
 - Neue Schätzung für FE und ME anhand von Mid Infra-Red (MIR)
 Spektrum
 - Weltweit erste Datenbank für die Routine genomischer
 Zuchtwertschätzung und kontinuierlicher Austausch zwischen den Projektpartnern
 - Messung der Gewinne aus der Nutzung der genomischen Zuchtwerte auf Betriebsebene
 - Gesellschaftliche Kosten/Nutzen Analyse von der Einführung beider Merkmale in den nationalen Zuchtprogrammen

Ein hohes Budget: > \$10'000'000

Schlussfolgerung

- Die genomische Selektion für Futtereffizienz und Methanemissionen wird nicht nur Kanada sondern auch den Partnerländern nutzen
- Kanada erhofft sich:
 - Gesteigerte Erlöse von ca. \$100M pro Jahr innerhalb von
 4 Jahren nach Projektende.
 - Reduktion von 11'000 Tonnen ME pro Jahr
 (dazu 26% Reduktion von ME nach 10 Jahren)
- Gewinne sind nachhaltig.
 - Neuartige Merkmale finden Eingang in Zuchtprogramme.

Trend Auslöser?

Ausblick:

Eine ganzheitliche Lösung für eine nachhaltigere Milchproduktion

- Internationale Zusammenarbeit führt zum Ziel
- Exzellente Partnerschaften, renommierte Kollaborateure ermöglichen gute und sichere Resultate für die Milchbranche
- Präzise Phänotypen werden für Futtereffizienz und Methanemissionen generiert.
- Positive Auswirkungen auf die Produzenten, die Industrie und die Umwelt
- Möglichkeit, die Milchindustrie nachhaltiger zu machen aber auch, Fortschritte in den Methoden der Genomik zu fördern.

Danke an alle Institutionen die das Projekt finanzieren und an die Projektpartnern:

GenomeCanada

GenomeAlberta

