Investigating pooled sequences of Apis mellifera

Matthieu Guichard¹, Alain Vignal², Sonia Eynard², Benjamin Dainat¹, Markus Neuditschko¹

¹Agroscope, Swiss Bee Research Centre, Switzerland ²INRAE Toulouse, France

www.agroscope.ch I good food, healthy environment

19.08.2020

🛡 Apis mellifera mellifera

- Native subspecies of the Western honeybee Apis mellifera in the Northern part of Switzerland
- Small population, two management strategies:
 - Selection by beekeepers (breeding programme)
 - Protection in conservation areas
- Main threats: Hybridization, Varroa destructor

2

Research Questions:

- 1/ Can genotypes associated a resistance against Varroa destructor (and other traits) best diffied?
- 2/Can we assess the population structure of the sampled colonies using pooled sequences?

Matthieu Guichard | SABRE Workshop matthieu.guichard@agroscope.admin.ch

3

Material and Methods

■ Colony sampling (N=210):

Population	Country of origin	Purpose	Code	N	Additionnal information
A. m. mellifera	Switzerland	Selection	MEL_SEL	112	+Pedigree information
A. m. mellifera	Switzerland	Conservation	MEL_CON	45	
A. m. mellifera	France, Savoie	Conservation	MEL_FRA	25	Evaluated in France
A. m. carnica-like	Switzerland	Selection	CAR_CHE	22	V. destructor Resistant?
A. m. carnica-like	Sweden	Selection	CAR_SWE	3	Surviving V. destructor
A. m. carnica-like	Norway	Selection	CAR_NOR	3	Surviving V. destructor

- Phenotypes: production, beekeeping abilities, resistance traits
- Genotypes

Matthieu Guichard | SABRE Workshop matthieu.guichard@agroscope.admin.ch

4

Grinding

- DNA extraction

Pair-end sequencing (IlluminaTM HiSeq) Mapping to ref. genome Amel HAv3.1^a

Selection of ~7 million SNPb

Allele counting in the pools

creation of **sequencing depth** and **allele count** files (ref. and alternative alleles)

a Wallberg, et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics. 2019;20(1):275 b SeqApiPop project, France

Material and Methods

- Depth, reference allele count and alternative allele count files:
 - Chromosome, Position of SNP, Reference allele, alternative allele
 - +: sequencing depth:
 - Or frequency of reference allele
 - Or frequency of alternative allele

For each pool (=colony)

roscope

Matthieu Guichard | SABRE Workshop matthieu.guichard@agroscope.admin.ch 6

Material and Methods

■ SNP pre-filtering: R

Material and Methods

- Preparing dosage file: Plink 2
- --hard-call-threshold: Threshold to attribute an allele to frequencies Default: 0.10 but only 100'000 SNP left: set to 0.40.

Matthieu Guichard | SABRE Workshop matthieu.guichard@agroscope.admin.ch

Material and Methods

- 3-step population structure analysis
 - ROH identification: regions of the genome without variation

Hap1: CCAGGTATTCAAAAAAAAAAAAAGGACT...... Hap2: TTGAACGCCTAAAAAAAAAAAAAAAAAAGTC......

- ROH can be used to calculate the inbreeding coefficent of individuals: $F_{ROH} = \sum_{L_{AUTO}} \frac{L_{ROH}}{L_{AUTO}}$
- Admixture calculation (ADMIXTURE): proportion of hybridization
- -> NetView: Vizualisation of genetic relationship structure, hybridization, inbreeding

Matthieu Guichard | SABRE Workshop matthieu.guichard@agroscope.admin.ch

9

Results

■ F_{ROH} (%) as a calculation of inbreeding

Population	Country	Origin	Code	N	F _{ROH} mean (%)	F _{ROH} min (%)	F _{ROH} max (%)	F _{PED} Mean (%)	F _{PED} min (%)	F _{PED} max (%)
A. m. mellifera	Switzerland	Selection	MEL_SEL	112	1.9	0.5	3.1	1.7	0.0	5.2
A. m. mellifera	Switzerland	Conservation	MEL_CON	45	2.3	1.1	3.1	-	-	-
A. m. mellifera	France, Savoie	Conservation	MEL_FRA	25	1.0	0.1	2.2	-	-	-
A. m. carnica- like	Switzerland	Selection	CAR_CHE	22	1.5	0.1	4.0	-	-	-
A. m. carnica- like	Sweden	Selection	CAR_SWE	3	2.5	2.5	2.6	-	-	-
A. m. carnica- like	Norway	Selection	CAR_NOR	3	0.4	0.2	0.7	-	-	-

Results

Admixture: Cross-validation error graph and barplot

Material and Methods

Vizualisation of population network according to sample origin

- Netview vizualisation of population according to K=5 cluster result
 - Node: admixture result; border: sample origin

Conclusion

- Population structure at subspecies level can be ascertained
- Inbreeding levels are lower compared to other livestock (e.g. horses): high recombination rate of *A. mellifera*
- Savoie population (France) is highly admixed
- Conservation+selection populations are closely related: exchanges between both?
- Substructure of the Swiss *A. m. mellifera* population might be explained by different drone pools at the mating stations?

aroscope

