

### Insights in two actual projects - Swiss goats and Alpine cattle

SABRE-TP, virtual meeting, 19 August 2020 Heidi Signer-Hasler, BFH-HAFL, Zollikofen

School of Agricultural, Forest and Food Sciences HAFL

## Goat project: Runs of homozygosity based on sequence data

In collaboration with Institute of Genetics, Vetsuisse Faculty, University of Bern

#### Goals

- Define appropriate parameters for ROH derivation using whole genomesequence data from local goat breeds.
- ► Derive genomic regions, that are highly homozygous in these breeds.
  → Selection signatures?
- What genes do we find in such regions?

Bern University of Applied Sciences | School of Agricultural, Forest and Food Sciences HAFL

3

#### Material

- SNP data extracted from sequence data of 226 goats:
  - Applied criteria: «pass» SNP, autosomal SNP, call rate 90%, polymorphic SNP
  - $\rightarrow$  31'313'770 variants and 226 goats pass filters and QC.

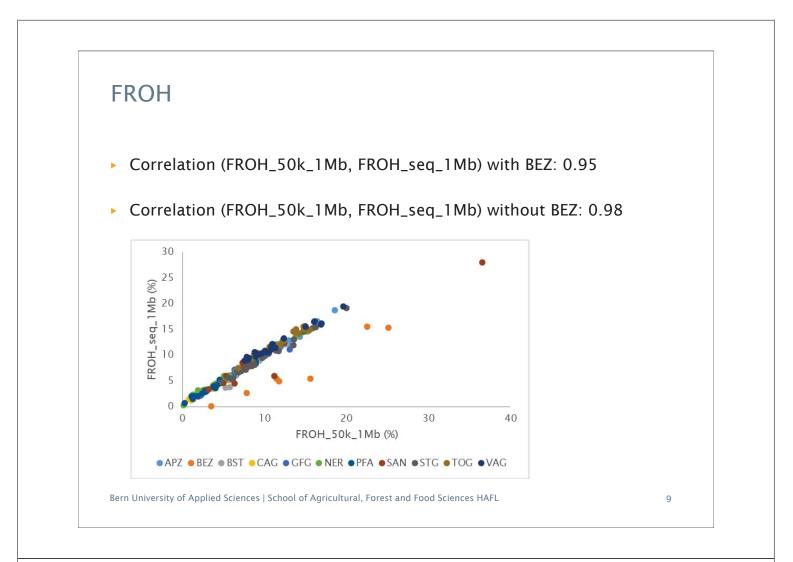
| breed | name                 | # of animals |
|-------|----------------------|--------------|
| APZ   | Appenzell goat       | 24           |
| BEZ   | Bezoar goat          | 9            |
| BST   | Grisons striped goat | 24           |
| CAG   | Capra Grigia         | 12           |
| GFG   | Chamois colored      | 19           |
| NER   | Nera Verzasca goat   | 24           |
| PFA   | Peacock goat         | 24           |
| SAN   | Saanen goat          | 19           |
| STG   | Booted goat          | 24           |
| TOG   | Toggenburg goat      | 24           |
| VAG   | Valais goat          | 23           |
|       |                      | 226          |

| Mat   | erial    | (Foto: SZZV)                          | TOG (Foto: SZZV)   |                           |                           |
|-------|----------|---------------------------------------|--------------------|---------------------------|---------------------------|
| breed | category | # of herd-<br>book<br>animals<br>2017 | Risk status<br>FAO | APZ (Foto: SZZV)          | BST (Foto: SZZV)          |
| APZ   |          | 1'263                                 | At risk            |                           | Channelle                 |
| BST   |          | 2'834                                 | At risk            | CAG (Foto: ProSpecieRara) | GFG (Foto: SZZV)          |
| CAG   |          | 426                                   | At risk            | share the                 |                           |
| GFG   | main     | 9'328                                 | Not at risk        |                           |                           |
| NER   |          | 814                                   | At risk            | MARY                      |                           |
| PFA   |          | 1'193                                 | At risk            | NER (Foto: SZZV)          | PFA (Foto: SZZV)          |
| SAN   | main     | 6'146                                 | Not at risk        |                           |                           |
| STG   |          | 493                                   | At risk            |                           |                           |
| TOG   | main     | 3'412                                 | At risk            |                           |                           |
| VAG   |          | 1'894                                 | At risk            |                           | STG (Foto: ProSpecieRara) |

Bern University of Applied Sciences | School of Agricultural, Forest and Food Sciences HAFL

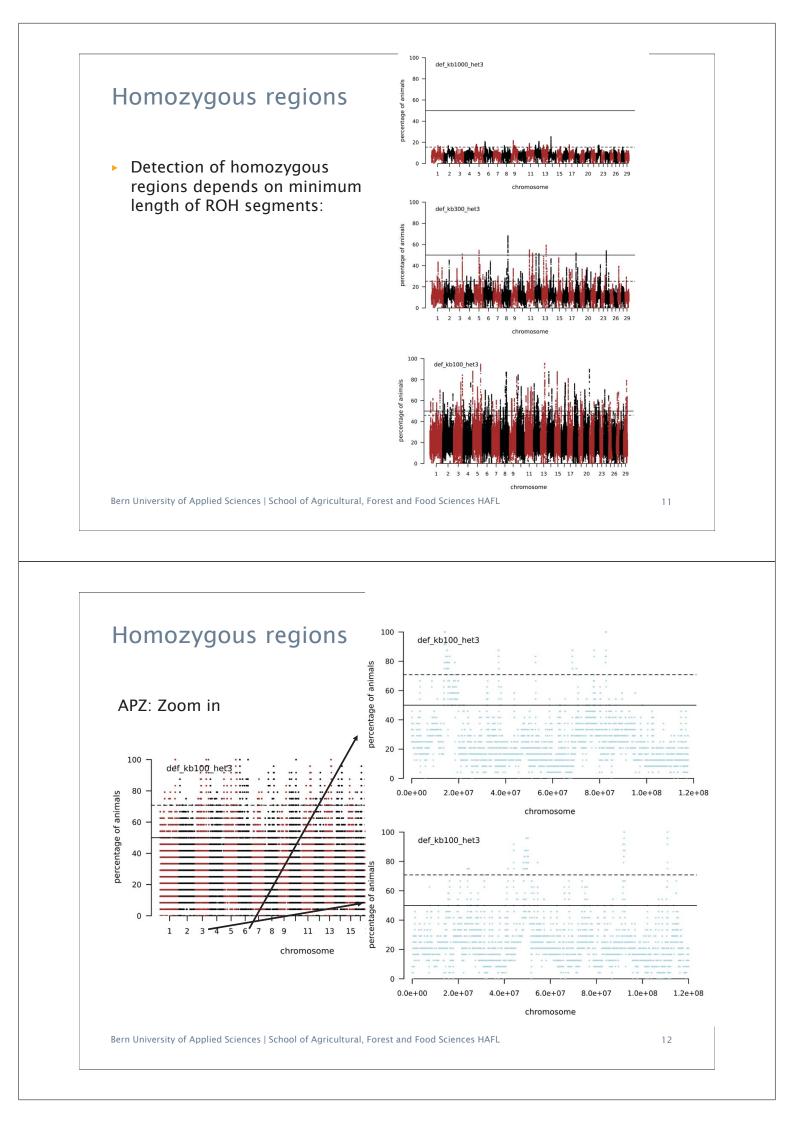
## Methods

- Determine runs of homozygosity (ROH) using PLINK1.9 option: --homozyg.
- Parameter setting:
  - Meyermans et al. 2019: «PLINK's minimal density requirement is crucial for medium density genotypes and if set too low, genome coverage of the ROH analysis is limited.»
  - For sequence data setting of --homozyg-density is not crucial, but the setting of --homozyg-window-het (number of heterozygous SNP per window), especially for low coverage data (Ceballos et al. 2018), to account for possible calling errors that may break a long ROH wrongly.
  - Depending on goal of the study: setting of --homozyg-kb (the minimum length of an ROH).


Bern University of Applied Sciences | School of Agricultural, Forest and Food Sciences HAFL

5

|                                                                                                                          | Length in Mb                                           | Length in Morgan | Number of generation |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|----------------------|
|                                                                                                                          | 16                                                     | 0.16             | 3                    |
| Methods                                                                                                                  | 8                                                      | 0.08             | 6                    |
| Methous                                                                                                                  | 4                                                      | 0.04             | 13                   |
|                                                                                                                          | 2                                                      | 0.02             | 25                   |
|                                                                                                                          | 1                                                      | 0.01             | 50                   |
|                                                                                                                          | 0.3                                                    | 0.003            | 167                  |
|                                                                                                                          | 0.1                                                    | 0.001            | 500                  |
| homozyg-kb (100, 300, 1)<br>homozyg-density 50                                                                           | 000)                                                   |                  |                      |
| homozyg-window-snp 50<br>homozyg-window-het 1 t<br>homozyg-window-missing<br>homozyg-window-threshol<br>homozyg-gap 1000 | 5                                                      | ry work→         | 3)                   |
| homozyg-window-snp 50<br>homozyg-window-het 1 t<br>homozyg-window-missing<br>homozyg-window-threshol                     | 5<br>Id 0.05<br>ined as the leng<br>by the overall len | th of the a      | utosomal             |


#### FROH

|       |              | Based on 50k from sequences |           |                  | Based on sequences |           |                  |
|-------|--------------|-----------------------------|-----------|------------------|--------------------|-----------|------------------|
| breed | # of animals | avg. NSEG                   | avg. KB   | FROH_50k_1Mb (%) | avg. NSEG          | avg. KB   | FROH_seq_1Mb (%) |
| APZ   | 24           | 49.08                       | 305284.13 | 12.44            | 125.17             | 307384.96 | 12.46            |
| BEZ   | 9            | 42.44                       | 287160.08 | 11.70            | 80.67              | 154950.58 | 6.28             |
| BST   | 24           | 23.29                       | 167401.52 | 6.82             | 61.04              | 162505.80 | 6.59             |
| CAG   | 12           | 11.17                       | 83022.04  | 3.38             | 35.25              | 88837.36  | 3.60             |
| GFG   | 19           | 22.58                       | 138731.48 | 5.65             | 60.84              | 141078.64 | 5.72             |
| NER   | 24           | 18.92                       | 145791.00 | 5.94             | 60.75              | 157509.97 | 6.39             |
| PFA   | 24           | 14.17                       | 107481.98 | 4.38             | 43.25              | 111072.20 | 4.50             |
| SAN   | 19           | 34.21                       | 217682.87 | 8.87             | 93.32              | 204216.00 | 8.28             |
| STG   | 24           | 30.50                       | 249440.00 | 10.16            | 86.50              | 240990.29 | 9.77             |
| тос   | 24           | 49.21                       | 286342.92 | 11.66            | 130.25             | 302886.71 | 12.28            |
| VAG   | 23           | 48.09                       | 284925.35 | 11.61            | 123.17             | 302527.43 | 12.27            |



#### FROH

| # of<br>animals | breed | avg.<br>NSEG | avg.KB    | avg.<br>KBAVG | avg. FROH<br>(%)_300kb | avg.<br>NSEG | avg. KB   | avg.<br>KBAVG | avg. FROH<br>(%)_100kb |
|-----------------|-------|--------------|-----------|---------------|------------------------|--------------|-----------|---------------|------------------------|
| 24              | APZ   | 308.83       | 404781.60 | 1309.35       | 16.41                  | 1307.08      | 557677.40 | 427.01        | 22.61                  |
| 9               | BEZ   | 372.33       | 301773.50 | 765.30        | 12.24                  | 1828.89      | 526792.60 | 288.87        | 21.36                  |
| 24              | BST   | 171.00       | 217042.50 | 1241.72       | 8.80                   | 1110.88      | 359535.20 | 324.16        | 14.58                  |
| 12              | CAG   | 161.25       | 148033.60 | 903.29        | 6.00                   | 1296.83      | 321208.50 | 248.03        | 13.03                  |
| 19              | GFG   | 192.95       | 206769.10 | 1050.78       | 8.38                   | 1256.11      | 367609.40 | 292.08        | 14.91                  |
| 24              | NER   | 219.33       | 235040.10 | 1021.93       | 9.53                   | 1366.25      | 411150.80 | 301.14        | 16.67                  |
| 24              | PFA   | 170.46       | 171514.40 | 979.56        | 6.96                   | 1303.54      | 344489.70 | 264.85        | 13.97                  |
| 19              | SAN   | 295.89       | 310710.60 | 1032.27       | 12.60                  | 1380.95      | 477264.40 | 343.19        | 19.35                  |
| 24              | STG   | 215.04       | 304596.70 | 1389.14       | 12.35                  | 1276.46      | 465782.60 | 366.29        | 18.89                  |
| 24              | TOG   | 341.63       | 414345.90 | 1210.10       | 16.80                  | 1352.21      | 570155.30 | 421.76        | 23.12                  |
| 23              | VAG   | 307.52       | 398796.00 | 1288.29       | 16.17                  | 1363.44      | 561123.80 | 412.06        | 22.75                  |



| Outlook                                                           |                                                                                                                                                                                  |                               |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Work in progress:                                                 |                                                                                                                                                                                  |                               |
| homozygous:<br>Is there so<br>Are there so<br>Can we lin          | nto regions where all animals of a b<br>mething of interest? Do we find car<br>structural variants?<br>k candidate genes and potential va<br>operties of the Swiss goat populati | ndidate genes?<br>riants with |
| <ul> <li>Publication of</li> </ul>                                | the results                                                                                                                                                                      |                               |
| Bern University of Applied Sciences   S                           | School of Agricultural, Forest and Food Sciences HAFL                                                                                                                            | 14                            |
| Conclusion                                                        |                                                                                                                                                                                  |                               |
|                                                                   | ense enough to determine genomic<br>nd conservation issues.                                                                                                                      | inbreeding for                |
|                                                                   | is on enriched homozygous region                                                                                                                                                 | s, sequence data              |
| <ul> <li>But if the interest i<br/>can help to go into</li> </ul> |                                                                                                                                                                                  |                               |
|                                                                   |                                                                                                                                                                                  |                               |
|                                                                   |                                                                                                                                                                                  |                               |
|                                                                   |                                                                                                                                                                                  |                               |

# Cattle project: Genetic diversity of alpine cattle

In collaboration with national and international organisations and institutes.

Bern University of Applied Sciences | School of Agricultural, Forest and Food Sciences HAFL

16

#### Genetic diversity of alpine cattle breeds

#### Background

- Signer-Hasler et al. (2017) investigated population structure of nine Swiss cattle breeds.
- Variability in the Evolèner breed is high and breeders wish to better understand its background.
- Eringer and Evolèner breeds are closely related with the breeds from Aosta valley (Valdostana castagna and Valdostana pezzata nera).
- Küttel et al. (2019) reported a complex structural variant responsible for the specific white spotting pattern of Pinzgau and Tux-Zillertal cattle. The variant segregates in Evolèner and the Eringer breed.
   → Historical relationships between these breeds.
- High density (or 50k) SNP-data is available for several alpine cattle breeds



## Genetic diversity of alpine cattle breeds

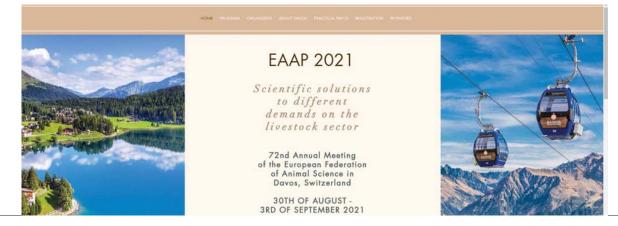
#### Goals

- Collect genotypes from different alpine cattle breeds.
- Analysis of genetic diversity within and between populations.
- Derivation of actual and historical admixture.

## Genetic diversity of alpine cattle breeds

#### Breeds and number of genotypes

| Country | Breed                  | # Genotypes | Institution                     |
|---------|------------------------|-------------|---------------------------------|
| СН      | Simmental              | 150         | <u>Swissherdbook</u>            |
| СН      | Original Brown         | 150         | Braunvieh Schweiz               |
| СН      | Eringer*               | 250         | UniBE, HAFL                     |
| СН      | Evolèner*              | 250         | UniBE, HAFL, Swissherdbook      |
| AUT     | Pinzgauer              | 220         | <u>Boku Vienna</u>              |
| AUT     | Tyrolean Grey          | 220         | <u>Boku Vienna</u>              |
| AUT     | Tux-Zillertaler        | 63          | <u>ÖnGENE</u>                   |
| AUT     | Ennstaler Bergschecken | 25          | <u>ÖnGENE</u>                   |
| AUT     | Pustertaler Sprinzen   | 25          | <u>ÖnGENE</u>                   |
| SVN     | Cika                   | 26          | Biotechnical faculty, Ljubljana |
| IT      | Valdostana- Castana    | 24          | ANABORAVA                       |
| IT      | Valdostana- Black      | 25          | ANABORAVA                       |
| IT      | Valdostana- Red        | 47          | University of Milano            |
| GER     | Hinterwälder           | 12          | University Hohenheim            |
| GER     | Vorderwälder           | 58          | University Hohenheim            |
| GER     | Murnau-Werdenfelser    | 96          | LMU München                     |
| FR      | Abondance              | 42          | INRA                            |
| FR      | Tarentaise             | 40          | INRA                            |
|         | Total                  | 1723        |                                 |


20

\* 250 genotypes will be randomly chosen to avoid overrepresentation of these Swiss breeds

#### Genetic diversity of alpine cattle breeds

#### Outlook

- Funding request submitted to OFAG by end of June 2020
- Data set is complete since end of July
- Analysis starts asap
- We would very much appreciate to submit a contribution from this study for EAAP 2021 in Davos!



