

AgroVet Strickhof

Vetsuisse Faculty Zurich, Institute of Veterinary Anatomy, Functional Genomics

Overview of ongoing research projects

Stefan Bauersachs

University of Zurich^{UZH}, Vetsuisse Faculty Institute of Veterinary Anatomy, AG Bauersachs, Functional Genomics AgroVet-Strickhof, Lindau (ZH), Switzerland

Group Members

PD Dr. Stefan Bauersachs, group leader

Dr. Carmen Alminaña Brines (PhD), research scientist

Dr. Meriem Hamdi, PhD, postdoc (MSCA-IF)

Alba Rudolf Vegas, PhD student

Siyka Bozukova, lab technician

Research topics and approaches of ongoing projects

Gene expression alterations at RNA and protein level as drivers of impaired fertility:

- Female fertility: endometrial alterations in RNA and protein expression, uterine microbiome
- Male fertility: spermatozoa and seminal plasma
- Embryo-maternal interactions during the preimplantation phase: signals from endometrium, embryo and through extracellular vesicles (EVs)
- Embryo: biomarkers of embryo quality (biotechnologies, i.e., vitrification and IVP)
- Biomarkers for infertility, disease, and stress in cell free circulating and EVs

Project 1:

Cell type-specific endometrial transcriptome analysis and uterine exosome communication: New approaches to decipher the embryo-maternal crosstalk during maternal recognition of pregnancy in the mare

Supported by the Swiss National Science Foundation, Project 31003A_173171 (2018-2022) and Foundation Pro Pferd (Zurich), Project 2018-03 (2018-2021)

Embryo-maternal interactions during initial recognition of pregnancy in the mare

Embryo-maternal interactions during maternal recognition of pregnancy

Maternal side

Embryo side

The endometrium as the most important maternal tissue in embryo-maternal interactions

 Support of embryonic development by providing nutrients and growth factors

Maternal recognition of pregnancy

• Preparation for implantation and placentation

LE luminal epithelium GE glandular epithelium BV blood vessels

Isolation of endometrial compartments by Laser Capture Microdissection (LCM)

Before LCM

After LCM

Luminal Epithelium (LE)

Glandular Epithelium (GE)

Stroma (S)

Blood vessels (BV)

Collection and characterization of uterine EVs

- EVs isolation from small-volume uterine lavage (70-80 ml)
- Characterization of isolated EVs by transmission electron microscopy (TEM), Western blot
- Analysis of molecular content: mass spectrometry proteomics, RNA sequencing

Project 2:

The uterine Microbiota and Fertility in the mare: Why the bacterial composition matters?

Supported by the Swiss National Science Foundation, Project 310030_200534 (2021-2025)

Objectives

1. To determine changes in the uterine microbiome depending on cycle and pregnancy status.

2. To determine the relation of uterine microbiota composition and mare fertility by comparing the uterine microbiota in fertile and subfertile mares and their uterine EVs.

3. To determine the functional impact on the endometrium by examining mechanisms of action of uterine microbiota-host interaction (alterations in endometrium gene expression, epithelial barrier integrity, and EVs as novel drivers of infertility).

Research approaches

Microbiome analysis using 16S rRNA gene sequencing

RNA sequencing – uterine cytobrush and spatial transcriptomics of endometrial biopsies

Primary equine endometrial epithelial cell (eEEC) culture

Uterine EVs RNA and protein cargo

- Low-input RNA-seq
- Proteomics

EVs from mares with altered and normal uterine microbiome

- Analysis of EVs uptake
- Response to EVs in eEECs

Project 3:

Exosomes as a new strategy in Assisted Reproductive Technologies in cattle: tracing maternal nanomessengers to improve pregnancy outcomes

- Dr. Meriem Hamdi, EU Horizon 2020 Marie Skłodowska Curie Postdoctoral Fellowship
- Focus on early embryonic development and embryo-maternal communication
- Exosomes as a new strategy in Assisted Reproductive Technologies (ART)
- Decoding the exosomal messages between mother and embryo to improve pregnancy outcomes in cattle
- Analysis of EVs molecular cargo derived from good and poor quality embryos before and after genome activation *in vitro* (co-culture with oviduct epithelial cells) and *in vivo*

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 897316

Project 4:

Effect of aircraft noise exposure on livestock performance

- Analysis of stress markers in milk and in milk EVs
- In collaboration with Prof. Röösli, Swiss Tropical Health Institute Basel, correlation of noise measurements with AgroVet-Strickhof records of dairy cows

Supported by Bundesamt für Umwelt (BAFU)

AgroVet Strickhof

Vetsuisse Faculty Zurich, Institute of Veterinary Anatomy, Functional Genomics

Research Station AgroVet-Strickhof

Thank you for your attention!!!