

Hubert Pausch Animal Genomics 10 November 2021

Topics covered today

- Genome assembly and pangenome integration
- Genome and transcriptome analyses to pinpoint male fertilityassociated loci

Reference-guided variant discovery revealed >140 million polymorphic sites in >4700 *taurine* and *indicine* cattle genomes¹

¹ Run 8 of the 1000 Bull Genomes Project (<u>http://www.1000bullgenomes.com/</u>)

The linear reference sequence has *limitations*.

Reference-guided variant discovery is prone to «reference allele bias»

«soft reference bias»

 Reads that contain only alleles that match corresponding reference nucleotides are more likely to align correctly than reads that also contain non-reference alleles

«hard reference bias»

- Reads originating from DNA fragments that are highly diverged from corresponding reference nucleotides will obtain low alignment scores, or align at incorrect locations, or remain un-mapped
- Reads originating from DNA fragments that are missing in the reference genome remain unmapped. Reference-guided variant discovery is blind to these sites

Graph-based references mitigate reference allele biases

- ARS-UCD1.2 used as backbone
- Augmented with SNPs and Indels prioritized based on allele frequency using VG (Garrison et al., 2018)
 - Breed-specific genome graphs
 Variants were prioritized within four breeds
 - *Pangenome graphs* Variants were prioritized across all breeds
- **Conclusion**: A graph-based reference *improves* read mapping, variant genotyping, and allelic balance at tractable complexity, **but** this approach is largely blind to more complex variant.

A prototype of a bovine multi-assembly graph

(Bos taurus, Bos indicus, Bos grunniens)

Edited by Harris A. Lewin, University of California, Davis, CA, and approved April 2, 2021 (received for review January 18, 2021)

Table 1. Details of six bovine genome assemblies

Assembly (Species)	Sex*	Primary data used for the assembly [†]	Type of assembly	Assembler	Contig N50 (Mb)	Scaffold N50 (Mb)	Length of the autosomes
Hereford (Bos taurus taurus)	F	PacBio (80-fold CLR)	Primary	Falcon	21	108	2,489,385,779
Angus (Bos taurus taurus)	м	PacBio (136-fold CLR)	Haplotype- resolved	TrioCanu	29.4	102.8	2,468,157,877
Highland (Bos taurus taurus)	F	PacBio (125-fold CLR)	Haplotype- resolved	TrioCanu	71.7	86.2	2,483,452,092
Original Braunvieh (Bos taurus taurus)	F	PacBio (28-fold HiFi)	Primary	Hifiasm	86.0	96.3	2,607,746,442
Brahman (Bos taurus indicus)	F	PacBio (136-fold CLR)	Haplotype- resolved	TrioCanu	23.4	104.5	2,478,073,158
Yak (Bos grunniens)	F	PacBio (125-fold CLR)	Haplotype- resolved	TrioCanu	70.9	94.7	2,478,308,164

Establishing Bovine Pangenome Graphs

Danang Crysnanto DISS. ETH NO. 27672

Danang Crysnanto, ETH **EH**zürich Login Help Deutsc Q Search **Research Collection** Home 🔶 Theses 🔶 Doctoral Thesis 🔶 View Item Browse **Establishing Bovine Pangenome Graphs Organisational Units** Publication Types Authors Download Full text (PDF, 11.32Mb) 🔶 Publish **Rights / license** New Submission Creative Commons Attribution 4.0 International Statistics Abstract Downloads by Country The assembly of the draft Bos taurus reference genome was a milestone for genetics-Open access (CC) and genomics-oriented research in cattle. The reference genome of domestic cattle was Most Popular Items built from a single animal from the Hereford breed. However, the linear reference Most Popular Authors sequence does not represent the genetic diversi Show more + Author Crysnanto, Danang ib Permanent link https://doi.org/10.3929/ethz-b-000510180 Date 2021 **Publication status** published Type Doctoral Thesis External links Search print copy at ETH Library C ETH Bibliography yes Contributors Examiner: Pausch, Hubert (1) Examiner: Guldbrandtsen, Bernt Examiner: MacHugh, David

uilt with minigraph

How to best integrate *haplotype-resolved* assemblies?

All reported findings are in our preprint

New Results

Follow this preprint

Bovine pangenome reveals trait-associated structural variation from diverse assembly inputs

D Alexander S. Leonard, Danang Crysnanto, Zih-Hua Fang, Michael P Heaton, Brian L. Vander Ley, Carolina Herrera, Heinrich Bollwein, Derek M. Bickhart, Kristen L. Kuhn, Timothy PL. Smith, Benjamin D. Rosen, Hubert Pausch

doi: https://doi.org/10.1101/2021.11.02.466900

This article is a preprint and has not been certified by peer review [what does this mean?].

Male fertility.

A 1-bp deletion in *QRICH2* is associated with sperm defects in Brown Swiss bulls

- Identified through a forward-genetic screen in one bull (born in 2003, twelve ejaculates collected, all discarded)
- Assigned onto a 675 kb haplotype (181 BovineHD SNPs) that segregates at a frequency of 5%
- Found one live male animal (6 months old) in Germany
- Bull was housed at our research station for approx. 1 year
- Seven ejaculates collected, defect verified

An eQTL cohort to map molecular phenotypes that are associated with male reproductive performance

eQTL cohort

- Testis tissue sampled from 76 mature bulls at a commercial slaughterhouse
- DNA sequencing to an average of 12.6-fold depth
- Deep total paired-end RNA sequencing (283.6 million reads per sample)
- Used for a genome-wide sQTL study

Contributors & funding

• Ben Rosen, Derek Bickhart, Tim Smith, USDA, USA, from the Bovine Pangenome Consortium

AgroVet Strickhof

ich Diversity of Zurich[™]

Functional Genomics Center Zurich

Qualitas.

European Commission Horizon 2020 European Union funding for Research & Innovation

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Office for Agriculture FOAG

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

FNSNF

Thank you for listening!

ETH Zürich

Hubert Pausch Animal Genomics Universitätstrasse 2 | LFW B 58.2 8092 Zürich

hubert.pausch@usys.ethz.ch www.ag.ethz.ch