

UNIVERSITÄT BERN

Numerous monogenic recessive disorders segregate in Swiss dairy populations

Irene M. Häfliger
Institute of Genetics, Vetsuisse Faculty

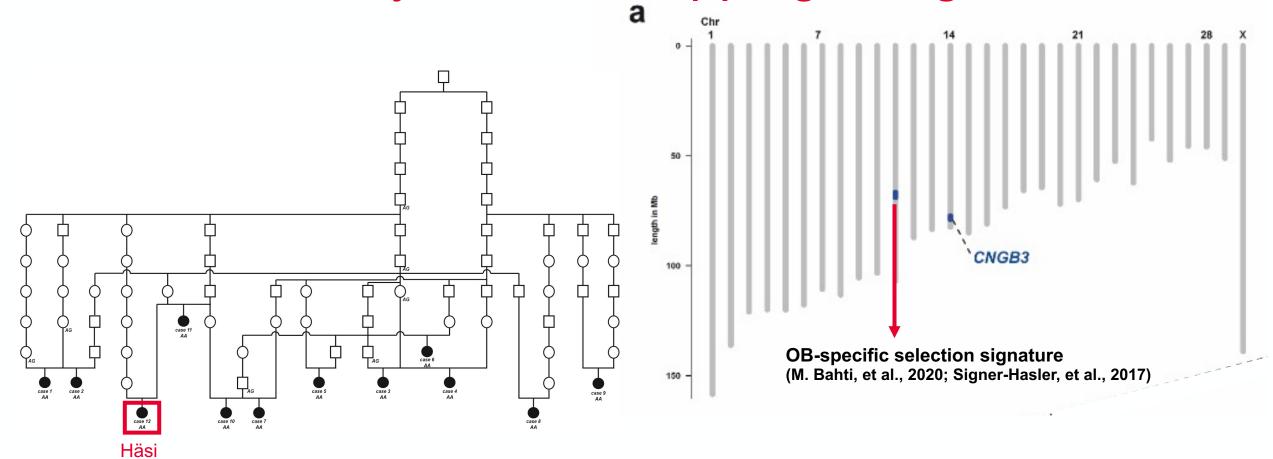
SABRE-TP

10. November 2021, Zürich

Forward genetics approach

phenotype

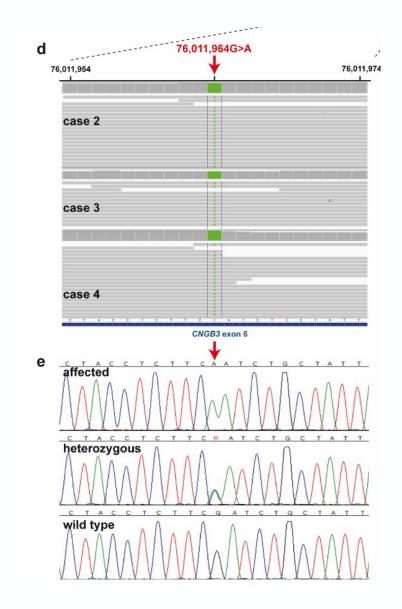
wholegenome sequencing

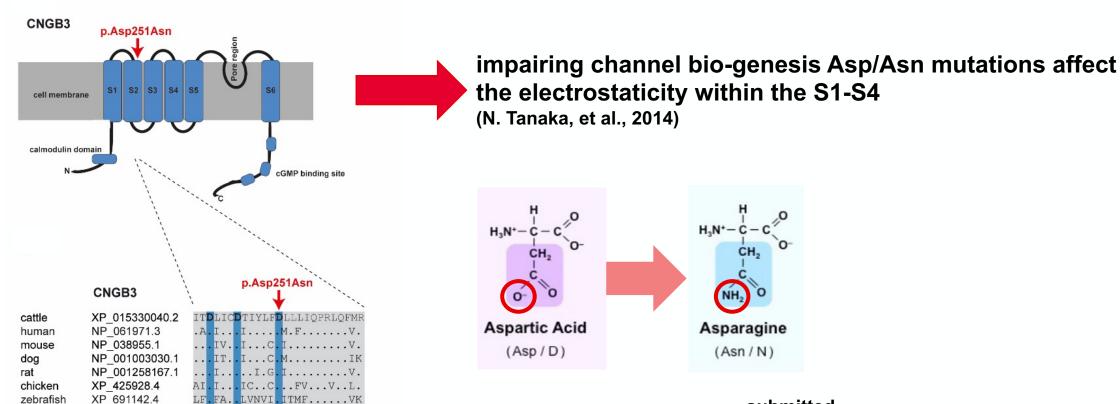

find the cause

CNGB3-associated achromatopsia in Original Braunvieh

impaired vision similar to day-blindness in human (and dogs)

Genetic analysis: IBD mapping using 12 cases




Candidate variant identification

- WGS data
 - 3 cases, their 3 dams and 2 sires
 - 567 control genomes
- Variant filtering:
 - 1/1 in the cases
 - 0/1 in all parents
 - 0/1 or 0/0 in all other animals

Validity of the CNGB3 variant

- Allele frequency
 - 0.099 in >2'950 Original Braunvieh
 - 0.0015 in >15'000 Brown Swiss

submitted

Artic

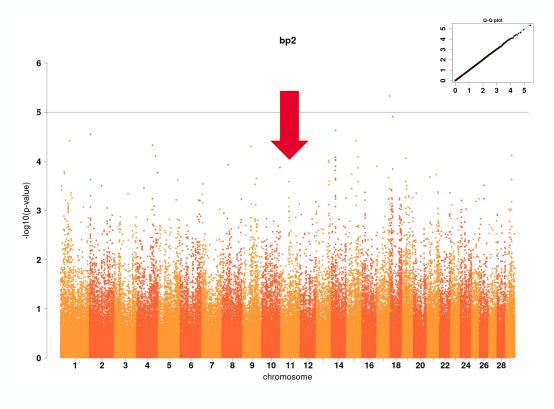
CNGB3 missense variant causes recessive achromatopsia in Original Braunvieh cattle

Irene M. Häfliger¹*, Emma Marchionatti²*, Michele Stengård³*, Sonja Wolf-Hofstetter¹, Julia M. Paris¹, Joana G. P. Jacinto⁴, Christine Watté³, Katrin Voelter⁵, Laurence M. Occelli⁶, András M Komáromy⁶, Anna Oevermann⁻, Christine Goepfert⁶, Angelica Borgo⁶, Raphaël Roduit⁶, Mirjam Spengeler¹₀, Franz R. Seefried¹₀ and Cord Drögemüller¹⁺

APOB-associated cholesterol deficiency (CD) in Holstein

- 1.3kb ERV insertion in APOB linked to CDH
- Biologically incapable of digesting cholesterol in the intestine
- Clinical signs: asymptomatic diarrhea
- Calves mostly "starve" to death
- Allele frequency in Swiss Holstein population (2021) at 0.0612

APOB-associated cholesterol deficiency in Holstein cattle is not a simple recessive disease

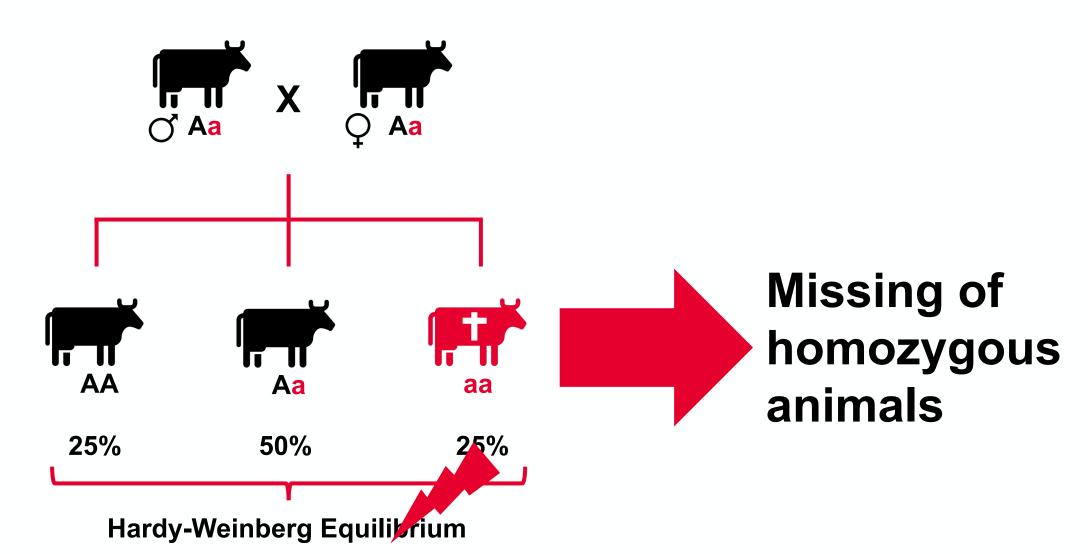

Irene Monika Häfliger*, Sonja Hofstetter*, Thomas Mock[†], Manuela Hanna Stettler[†], Mireille Meylan[†], Kemal Mehinagic[‡], Nadine Stokar-Regenscheit[‡] and Cord Drögemüller* (D)

*Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland . †Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland . ‡Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland .

APOB-associated cholesterol deficiency (CD) in Holstein

- Problem: Co-dominant effect
- Sample calculation

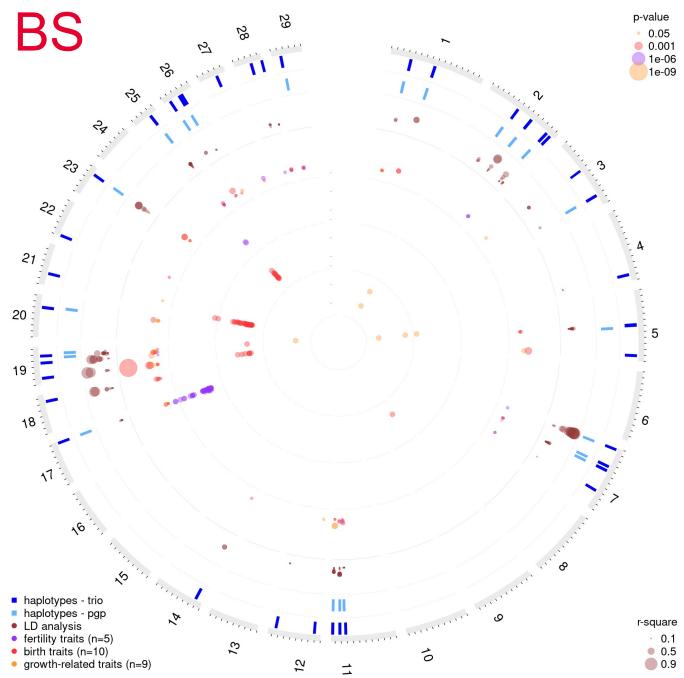
Assumption	# animals	
Herdebooks (Population size)	250'000 healthy cows	
Homozgous wt HWE	220'360	
Homozgous carrier HWE	935 😡	
Heterozygous carrier HWE	28'705	
Every 3 rd heterozygous carrier shows symptoms	9'568	
Every 10 th heterozygous carrier dies due to the symptoms	2'871 😥	
sum 💮	3'806 💮	

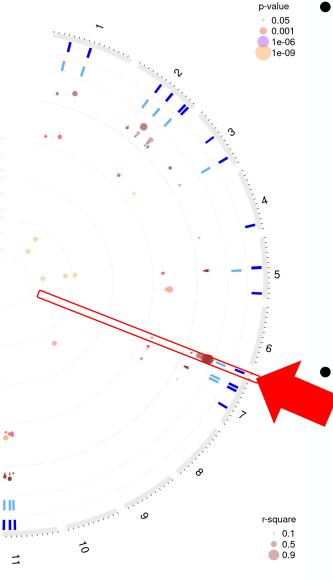

Reverse genetics approach

populationwide validation candidate variant identification

whole-genome sequencing

SNP data


Mendelian Inheritance Theory of Recessive Variants


Results – Overview BS

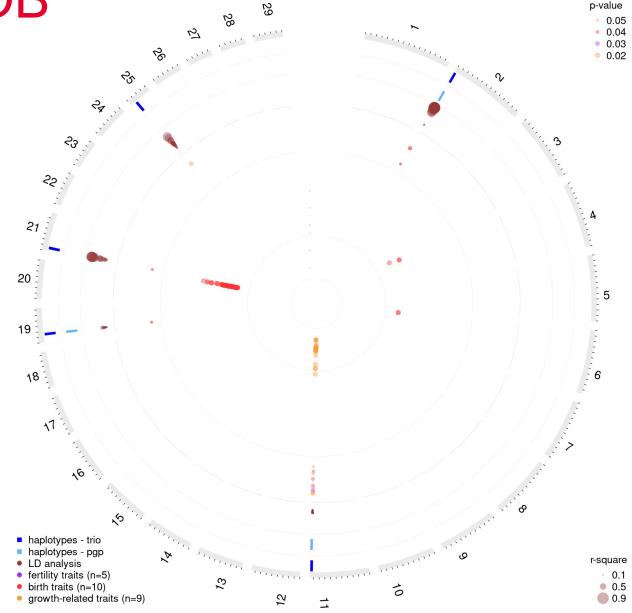
Häfliger I.M., Seefried F.R., Spengeler M. & Drögemüller C. 2021. Mining massive genomic data of two Swiss Braunvieh cattle populations reveals six novel candidate variants impairing reproductive success. Genetics Selection Evolution, submitted.

BH14 in the spotlight

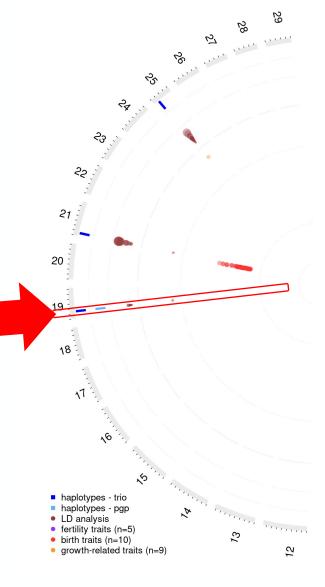
- Haplotype:
 - 0 of 45 expected homozygous animals
 - Allele frequency: 0.03
 - Associations:
 - interval first to last insemination, cows
 - interval calving to first service
 - fat cover
 - heifer survival rate up to 458d
 - Candidate causal variant: Chr7 2996436 C>T *MRPL55*: p.Arg57* (nonsense variant)
 - High LD with haplotype
 - NO homozygous animal in > 4'500 WGS
 - NO homozygous animal in > 13'000 custom array

BH14-associated MRPL55 variant

- Gene: MRPL55
 - mitochondrial ribosomal protein L55
 - Gen function:
 - Essential role in the mitochondrial ribosomal complex
 - Protein binding enzyme
 - Associated disorder:
 - Early embryonic death in homozygous knock-out mice (Cheong et al. 2021)



Hypothesis: homozygous embryos are non-viable and are aborted during early embryogenesis


Results – Overview OB

Häfliger I.M., Seefried F.R., Spengeler M. & Drögemüller C. 2021. Mining massive genomic data of two Swiss Braunvieh cattle populations reveals six novel candidate variants impairing reproductive success. Genetics Selection Evolution, submitted.

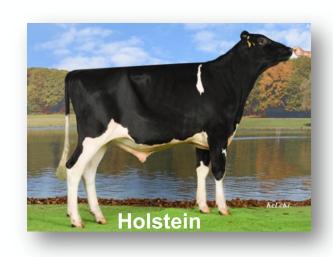
OH6 in the spotlight

Haplotype:

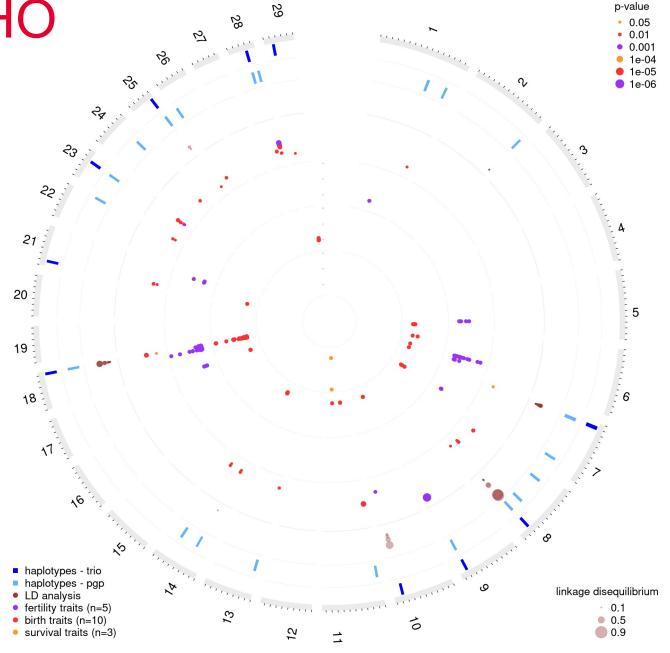
- 0 of 15 expected homozygous animals
- Allele frequency: 0.039
- Association:
 - percentage live birth, maternal

Candidate causal variant:

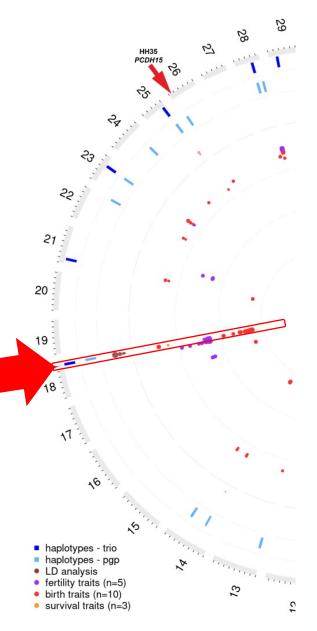
- Chr19:15080335 GGCACCT>G
 LIG3: p.Lys828fs (frame-shift variant; splice site)
- perfect LD with haplotype
- NO homozygous animal in > 4'500 WGS


OH6-associated *LIG3* variant

- **Gene**: *LIG3*
 - DNA ligase 3
 - Gene function:
 - Repair of DNA strand breaks
 - Essential for repair of mitochondrial DNA
 - Associated disorders:
 - Homozygous lethal in kock-out mice (Shokolenko et al., 2013)



Hypothesis: homozygous embryos are non-viable and are aborted during early embryongenesis

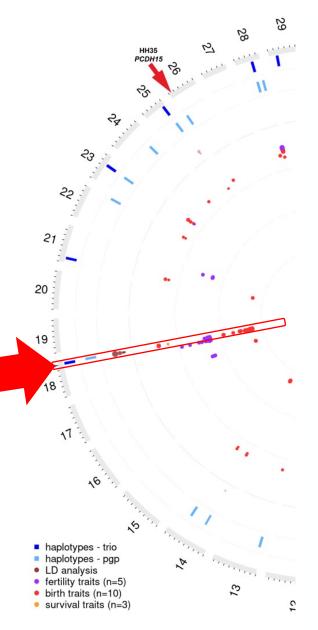

Results – Overview HO

Häfliger I.M., Spengeler M., Seefried F.R. & Drögemüller C. **2021**. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. *Scientific Reports*, submitted.

HH13 in the spotlight

Haplotype:

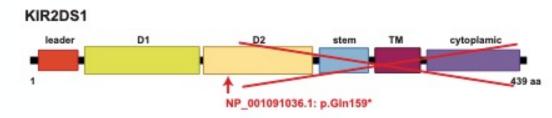
- 1 of 17 expected homozygous animals
- Allele frequency: 0.018
- Associations: (including GWAS)
 - Non-return rate
 - Interval first to last inseminaiton
 - Birth weight, direct



Detection of Haplotypes Associated with Prenatal Death in Dairy Cattle and Identification of Deleterious Mutations in GART, SHBG and SLC37A2

Sébastien Fritz^{1,2}, Aurelien Capitan^{1,2}, Anis Djari³, Sabrina C. Rodriguez^{2,3}, Anne Barbat², Aurélia Baur^{1,2}, Cécile Grohs², Bernard Weiss², Mekki Boussaha², Diane Esquerré⁴, Christophe Klopp³, Dominique Rocha², Didier Boichard²*

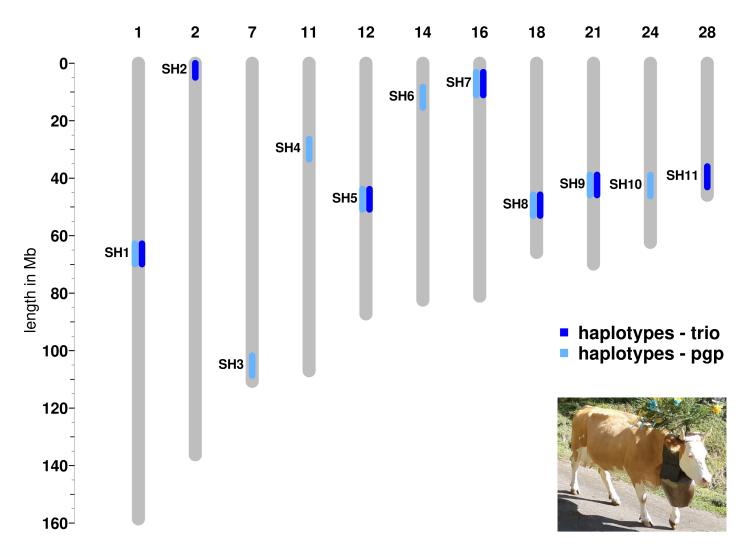
1 UNCEIA, Genetics Team, Paris, France, 2 INRA, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France, 3 INRA, Sigenae, UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan, France, 4 INRA, GeT Genomics Facility, UMR444 Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France


HH13 in the spotlight

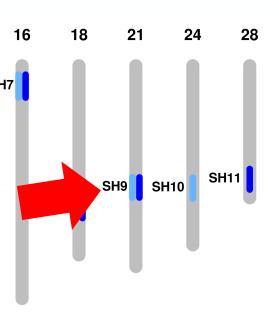
- Haplotype:
 - 1 of 17 expected homozygous animals
 - Allele frequency: 0.018
 - Associations: (including GWAS)
 - Non-return rate
 - Interval first to last inseminaiton
 - Birth weight, direct
- Candidate causal variant: Chr18 62758881 G>A
- KIR2DS1: p.Gln159* (nonsense variant)
 - average LD with Haplotype
 - NO homozygous animals in > 4'200 WGS
 - NO homozygous animals in > 13'000 SWISScow

HH13-associated KIR2DS1 variant

Gene: KIR2DS1



- killer cell immunoglobulin like receptor, two lg domains and short cytoplasmic tail 1
- Gene function:
 - Placentation success; embryonic growth
 - Immune system
- Associated disorders:
 - Pregnancy loss
 - Infections during pregnancy


Hypothesis: homozygous embryos fuse not in the placenta and/or are aborted during early embryongenesis

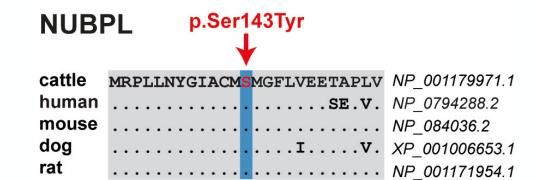
Results – Overview SI

Häfliger I.M., Seefried F.R. & Drögemüller C. 2021. Reverse genetic screen for deleterious recessive variants in the local Simmental cattle population of Switzerland. Animals, submitted.

SH9 in the spotlight

haplotypes - triohaplotypes - pgp

Haplotype:


- 2 of 19 expected homozygous animals
- Allele frequency: 0.0433
- Candidate causal variant: Chr21 42154344 C>A
- NUBPL: p.Ser143Tyr (missense variant)
 - perfect LD with Haplotype
 - Highly conserved base and residue
 - NO homozygous animals in > 4'200 WGS

SH9-associated NUBPL variant

- Gene: NUBPL
 - nucleotide binding protein like
 - Gene function:
 - Assembly of the respiratory complex I
 - Immune system
 - Associated disorders:
 - Mitochondrial complex I deficiency disorder (OMIM: 613621,618242)
 - Ataxia, spasticity, etc.
 - Homozygous lethal in kock-out mice (MGI:1924076)

Hypothesis: homozygous embryos are non-viable and are aborted during early embryogenesis

Summary of selected causal variants

Phenotype / Haplotype	Breed	Associated gene	Allele / haplotype frequency
Cholesterol deficiency	Holstein	APOB	0.061
Ichthyosis	Scottish Highland	DSP	0.012
Achromatopsia (OH1)	Original Braunvieh	CNGB3	0.099
BH14	Brown Swiss	MRPL55	0.032
OH6	Original Braunvieh	LIG3	0.039
HH13	Holstein	KIR2DS1	0.049
SH9	Simmental	NUBPL	0.043

Outlook

- Unsolved homozygous deficient haplotypes → need solving
- Phenotype validation:
 - Monitoring of risk-matings
 - non-embryonic lethal variants/haplotypes
- Inclusion in daily breeding practice → avoid futher risk-matings
- Similar reverse genetics screens can be performed in other (beef, local) populations with increasing SNP data availability

Thank you very much!

Qualitas.

b UNIVERSITÄT BERN

Thank you for your attention!

Questions?

