

Genomic Prediction in two Swiss populations

Negar Khayatzadeh

SABRE-TP January 2024

11.01.2024, Zurich

Outline

- > genomic breeding programs:
 - Swiss Large White dam line (SLW)
 - Swiss Large White sire line (Premo)
 - Swiss Landrace dam line (SLR)

> New health Index: longevity

Swiss pig breeding populations

- > SLW: typical dam line since 2002
 - genomic prediction since 2016
 - start with 1000 reference animals (focus on accuracy of predictions > 50%)

Premo: sire line since 2002

genomic prediction together with SLW since 2016

- > SLR: regular import from France since 2008
 - genomic prediction since 2023
 - start with at least1000 reference animals (focus on accuracy of predictions > 50%)

Reference animals (March 2023)

Breed	No. genotyped	No. Ref. Sows	R ² NBA	No. Ref. Boars	R ² NBA	
SLW	9'327	3′073	0.61	660	0.81	
SLR	3′488	1′347	0.55	193	0.73	
Production						
Breed	No. genotyped	No. Ref. Anim	R ² ADG	R ² FC	R ² LMC	
SLW	9′327	3'973	0.67	0.73	0.77	
Premo	13'657	1′342	0.70	0.79	0.86	
SLR	3'488	670	0.71	0.76	0.80	

Conformation

Reproduction

Breed	No. genotyped	No. Ref. Anim	R ² Teats	R ² Teats inverted	R ² Inner hoof
SLW	9′327	3′289	0.85	0.76	0.70
Premo	13'657	840	0.85	0.75	0.68
SLR	3′488	949	0.84	0.74	0.68

Reproduction

• The size of the reference population for SLW is currently 2.5 times bigger than for SLR.

Production und conformation fewer SLR reference animals.

Genomic relationship matrix (GRM)

- SLW and Premo: common starting population in 2002
- SLR : separate breed, genotype frequencies clearly different from SLW and Premo

GRM structure for GEBV

V1. a shared GRM

V1. shared	SNP ID			
Breed	1	2	3	
SLW				
Premo				
SLR				

V2. a shared GRM for SLW und Premo and a nonshared GRM for SLR

SLW/Premo

NULL

V3. three nonshared GRM

NULL

V3. nonshared	PID_1		SNP ID_5			SNP ID_2			
Breed	1	2	3	1	2	3	1	2	3
SLW									
Premo									
SLR									
SLW									
NULL		Pre mo							

• Due to different population structure in both LW compared to LR, the variant 2 is optimal to construct the GRM.

Stein, Y. et al, 2019. doi:10.1093/jas/skz296

SLW/Premo

Genomic relationship matrices for our different indices

Reproduction

- 2 separate GRM: SLW and SLR.
- Premo-genotypes are excluded and GEBV is implemented for two dam lines.
- Premo-young sows and boars receive the pedigree EBV (EBV) afterwards.

Production und conformation

- 2 separate GRM: SLW/Premo and SL
- SLW und Premo benefit from each other, and their relationships are therefore considered (coming from a common population).
- A separate GRM for SLR like the reproduction.

Validation procedure: how good and exact are genomic predictions?

SABRE-TP Januar 2024

SUISAG

Final set of parameters: historical data and H-inverse

Reproduction

Historical data							
Pedigree	Birth year 2004						
Genotypes	Birth year 2006						
Records	Litter date 2010						
Scaling paramete	Scaling parameter for Invers of H-matrix (G – A ₂₂)						
GRMs	2 separate GRMs (SLW und SLR)						
Scal. factors	*w:0.15, t:1.1, o: 0.8						

Production und conformation

Historical data								
Pedigree	Birth year 2004							
Genotypes	Birth year 2006							
Records	End of test 2010							
Scaling parameter	Scaling parameter for Invers of H-matrix (G – A ₂₂)							
GRMs	2 separate GRMs (1.SLW/Premo shared and 2. SLR)							
Scal. factors	SLW/Premo: w:0.15, t:1.1, o: 0.9							
	SL R : w:0.10, t:1.0, o: 0.5							

 $^{\ast}\text{w},$ t and o are weight, tau and omega for $A_{22}\text{-}$ and G-Matrices in software hginv

Part of Hinverse = $tau[a + b((1-w)G + wA_{22})]^{-1} - omega^*A_{22}^{-1}$

- Weight (w) to make G invertible
- Tau (t) for the reduced genetic variance
- Omega (o) for different depth of pedigree

Results from validation studies I: Reproduction

Table 1 Accuracy of predictions of GEBVs for reproduction traits andreproduction index by breeds

	NBA	PS	Traits weighted in Repro index
205 SLW			
Rel. Improvement (with / without SNP)	2.00	1.67	1.94
Slope with SNP (bias)	0.97	0.91	0.94
218 SLR			
Rel. Improvement (with / without SNP)	1.29	1.08	1.17
Slope with SNP (bias)	1.31	0.94	1.13

*relative improvement is supposed to be > 1.\$Slope as bis criteria is supposed to be close to 1.

> **NBA** higher gain in accuracy

- > **FAR** little gain in accuracy
- GEBVs for SLR
 - 29% of the ranking of the selection candidates is more accurate than pure pedigree breeding values.
 - Breeding value differences are generally estimated to be greater later with performance data.

Results from validation studies II: Produktion

Table 2 Accuracy of predictions of GEBVs for production traits and reproduction index by breeds

	FC	IMF	LMC	ADG	Traits weighed in Prod index
175 SLW					
Rel. Improvement (with / without SNP)	1.22	1.37	1.41	1.29	1.31
Slope with SNP (bias)	1.04	1.52	1.12	0.99	1.17
202 Premo					
Rel. Improvement	1.26	1.21	1.55	1.44	1.32
Slope with SNP (bias)	1.10	1.28	0.89	1.13	1.13
98 SLR					
Rel. Improvement	0.97	0.97	1.07	1.13	1.08
Slope with SNP (bias)	1.24	0.78	1.17	1.01	0.98

*relative improvement is supposed to be > 1.
\$Slope as bis criteria is supposed to be close to 1.

SLW und Premo:

- 30% gain in accuracy.
- Breeding values differences are underestimated on average.

- > SL:
 - 8% more precise ranking of the selection candidates.
 - GEBVS are estimated with less bias on average.

Conclusions

- GEBVs gives SLR an accuracy gain of almost 17% for reproduction, 8% for production and 15% for conformation on average.
- Starting with >1400 SLR reference sows in reproduction, slightly fewer reference animals in production and significantly fewer reference animals in conformation. The accuracy of the GEBVs for SLR will increase over time with more reference animals.
- The definitive introduction of the new GEBVs, considering the genotypes of SLR in our data band SuisData: 22. Juni 2023.

Longevity

- Current related health traits in our breeding program
 - Piglet survival until weaning
 - Litter quality: weight of piglet (under < 1 kg) und stillborn piglets
 - Conformation traits (healthy legs, teats)
 - Marker selection for ColiF4 and coli ColiF18 resistant

New

Longevity as indicator for productive lifetime

Which trait is a better indicator for productive lifetime?

Example:

A Sow with <u>finished</u> carrier with 3 litters

A Sow with <u>ongoing</u> carrier with 3 litters

Merkmal	VF	₹12	VF	₹13	VF	₹14	LL	AW
Kodierung	erleben [1]	ableben [0]	erleben [1]	ableben [0]	erleben [1]	ableben [0]	[0,0,,1]	[Summe der Würfe]
Wurf 1	-	-	-	-	-	-	0 0	1 1
Wurf 2	1 1		-	-	-	-	0 0	<mark>2</mark> 2
Wurf 3	-	-	1 1		-	-	1 0	3 3
Wurf 4	-	-	-	-	NA	0	-	-
Wurf 5	-	-	-	-	-	-	-	-

NA = no litter information

Assumptions:

Sows without litter information to <u>210 days</u> after the last farrowing are assumed to no productive anymore.

SUISAG

- <u>30 days</u> weaning to the next service.
- <u>120 days</u> gestation length.
- <u>40 Tage</u> lactating.

SABRE-TP Januar 20

• <u>20 Tage</u> delay to receive the litter data.

Trait	h² (SE)
Stayability 12 (VR12)	0.04 (0.007)
Stayability 13 (VR13)	0.06 (0.008)
Stayability 14 (VR14)	0.09 (0.010)
Longevity (LL)	0.03 (0.002)
No. of Litters (AW)	0.14 (0.011)

Why longevity?

- The longevity trait has a low heritability (3%), but it shows the highest predictability even without known own contributions.
- Due to the low heritability, little breeding change is expected.
- **Publish as index** (mean 100 and standard deviation of 20).
- Since Jan. 2024 in SUISAG databank.

- Allmend 10
 CH-6204 Sempach
 + 41 41 462 65 50
- nkh@suisag.ch
- + 41 41 462 65 84

Allmend 10 | CH-6204 Sempach | Telefon + 41 41 462 65 50 | info@suisag.ch | www.suisag.ch