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Motivation

= Tail biting in pigs
reduced welfare TH
economic losses

= [ndication that behavioural needs are unmet
biter’s welfare reduced

= Multifactorial origin
accumulating stressors (boredom, stable climate, sanitary conditions, diet, health)

= Qutbreaks (brewing beneath the surface)
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U Breeding pigs with higher stress resilience

= in addition to improved management!
= coping with stress has genetic basis «adarmideen & Janss 2007; Kasper et al., 2020
= tail biting is heritable Breveretal, 2005

Phenotype: behavioural changes long before outbreak
— ‘precursors’

« feeding patterns change (pen) Oliagnier et al., 2023

« tail posture (individual) Statham et al., 2009; Zonderland et al., 2009; Drexl et al., 2023
* activity increases (biter) Statham et al., 2009; Zonderland et al., 2011

* tail-in-mouth events increase Schroder-Petersen & Simonsen, 2001
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Developing high-throughput phenotyping

= Goal: identify pigs with higher stress resilience
— ‘measure’ stress resilience at individual level

= record behaviour live with ‘pen and paper’ or from videos

= > 1°000 individuals with phenotypes
= high throughput needed!

= video surveillance
= gather data on individuals to select stress-resilient pigs
= monitoring pig behaviour real-time, alarm system for farmers
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¢ Computer vision for phenotyping

Vladimir Zivkovic —
Animal Scientist (Institute for

animal husbandry, Belgrade,
Serbia)

Ongoing project @Agroscope

Hassan Nasser — Computer Vision expert (Agroscope)

Ana Margarida Gomes Farinha — Master’s student
(Agroscope & Polytechnic Institute of Viseu, Portugal)

Kirill lvanov — PhD student
(Dept of Comparative
Biomedicine and Food
Science, Padova, Italy)
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¢ A Roadmap for assessing pigs behavior from video
surveillance

Goal
Compare methods for detecting
behaviours of individual pigs

= 2 pens with 12 castrated male pigs each
= 100 - 140 kg live weight
= 5 surveillance cameras

e A L - . .
e SUP AL S ST L g

Computer vision for tail biting | SABRE-TP 5 December 2024 6
Claudia Kasper




Steps and challenges

Establishing ethogram & installing cameras
Selecting images with highest information content
Annotating images

Choosing and training the model

Evaluating model performance
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U Establishing ethogram & installing cameras

36 days x 13h (7:00 — 20:00) x 5 cameras = 3’055 hours of video
after preselection: 1’850 h of video = 231.25 work days
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Ethogram: catalogue of
behaviours
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U Selecting information-rich images

» Software Lightly

Select subset of images (frames) with the
biggest impact on model accuracy — reduce
redundancy

Embeddings: reduce dimensionality and
cluster similar frames together
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Annotating the images

= Software CVAT

= Posture of pig (standing/sitting/lying)

= Bounding boxes (BB) around pig,
head, tail > 286 frames

= Segmentation + BB head & tail -» 516

frames

1 camera —
800 frames
15’645 objects
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¢ Annotating the images
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¢ Annotating the images

Individual pigs
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¢ Annotating the images
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¢ Annotating the images
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© Which model fits best to solve our problem?

Object detection?

Key Points?

N4

Action recognition? |
Complexity
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¥ Training the model

Baseline model!
* YOLO v8 medium — 286 frames, 4’872 objects (BB pig, head & tail only)
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¢ Evaluating model performance

F1 confidence curve:

false positive and false negative
(average of precision and recall)

against different confidence thresholds

F1 score
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Precision

¢ Evaluating model performance
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Precision-recall curve:

Trade-off between precision and recall

Precision: ability to not categorize negative as
positive

Recall: ability to detect positive
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¢ Evaluating model performance
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© Which model fits best to solve our problem?

Object detection?

Key Points?

N4

Action recognition? |
Complexity
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U Data Labeling with keypoints
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U DeeplLabCut (developed at EPFL)

File View Help

GitHub

II Engine pytorch

Manage project Extract frames Label frames Create training dataset Train network Evaluate network Analyze videos Unsupervised ID Tracking (*) Create videos Extract outlier frames (*) Refine tracklets (*) Model Zoo Video editor (*)

DeeplLabcCut - Optional Video Editor

Video Selection
mp4 v Select videos Clear selection
Attributes

Downsample and rotate: Shorten video (trim):
Video height (aspect ratio fixed) Rotate video gl Trim start (sec)

Rotation angle (deg) 0.00 Trim end (sec)
Downsample
Rotate
Trim

Crop

+ No pre-processing, no-code, good starting point
- Does not rely on heuristics such as body models
=» Occluded points can’t be tracked

Agroscope

Computer vision for tail biting | SABRE-TP 5 December 2024
Claudia Kasper



https://github.com/DeepLabCut/DeepLabCut

¢ Comparing models (deep neural networks)

» with @ minimum baseline keypoint configuration
= Resnet50 performs best

Train rmse_ pcutoff

Train mAP

Train mMAR

Train rmse_detections

Train rmse_detections_pcutoff
Test rmse

Test rmse_pcutoff

Test mAP

Test mMAR

Test rmse_detections

Test rmse_detections_pcutoff
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U Key point selection

* How many key points?

Keypoints Miniml_Jm requirements Unitary_test (with_
(Baseline model) everything else fixed)

Ears 1 3 (EAR3P)

Eyes 0 2 (EYES2P)

Tail 1 ]

Nose 1 2 (SNOUT2P)

Back 3 5 (BODY5P)
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© Which model fits best to solve our problem?

Object detection?

Key Points?

N4

Action recognition? |
Complexity
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Conclusion & next steps

» Obtained ok results with just 286 frames
* Training on the full set of available annotated frames promising

Next steps

» Transfer model to other cameras (different angles)

» Extract relative positions of heads and tails

= Infer behaviours using specialized software and define rules

» Compare the three methods (object detection — key points — action
recognition)
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Challenges

* The right phenotype
= Validity (welfare specialists needed)
* Translate ethogram to computer
language
» Camera positioning

= Communication in interdisciplinary
team

» Setting up cloud/server
» Getting DeepLabCut to work
= Individual tracking
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@ Thank you! Pjﬂ!ﬁﬂm

. COST Action CA22112
Experimental Farm:
" Guy Maikoff European Network
= Bertrand Egger on Livestock Phenomics
" Fabrice Sansonnens multidisciplinary, interconnected and inclusive

community of experts in Livestock Phenomics
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Thank you for your attention

Claudia Kasper
claudia.kasper@agroscope.admin.ch

Agroscope good food, healthy environment
www.agroscope.admin.ch
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