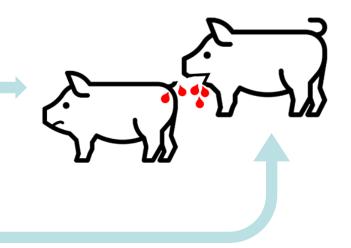


Federal Department of Economic Affairs, Education and Research EAER

Agroscope



SABRE-TP "Phänotypisierung im digitalen Zeitalter", Schluechthof Cham

www.agroscope.ch I good food, healthy environment

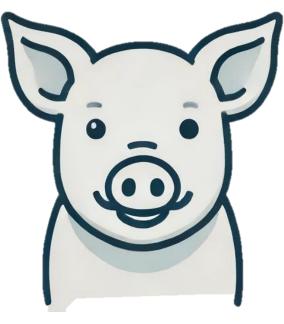
Output in the second second

- Tail biting in pigs
 - reduced welfare
 - economic losses

- Indication that behavioural needs are unmet
 - biter's welfare reduced
- Multifactorial origin
 - accumulating stressors (boredom, stable climate, sanitary conditions, diet, health)
- Outbreaks (brewing beneath the surface)

O Breeding pigs with higher stress resilience

- in *addition* to improved management!
- coping with stress has genetic basis Kadarmideen & Janss 2007; Kasper et al., 2020
- tail biting is heritable Breuer et al., 2005


Phenotype: behavioural changes long before outbreak

- 'precursors'
- feeding patterns change (pen)
- tail posture (individual)
- activity increases (biter)
- tail-in-mouth events increase

Ollagnier et al., 2023

Statham et al., 2009; Zonderland et al., 2009; Drexl et al., 2023

- Statham et al., 2009; Zonderland et al., 2011
- Schrøder-Petersen & Simonsen, 2001

Developing high-throughput phenotyping

Goal: identify pigs with higher stress resilience
 → 'measure' stress resilience at *individual level*

- record behaviour live with 'pen and paper' or from videos
- > 1'000 individuals with phenotypes
- high throughput needed!
- video surveillance
 - gather data on individuals to select stress-resilient pigs
 - monitoring pig behaviour real-time, alarm system for farmers

Computer vision for phenotyping

Ongoing project @Agroscope

Hassan Nasser – Computer Vision expert (Agroscope)

Ana Margarida Gomes Farinha – Master's student (Agroscope & Polytechnic Institute of Viseu, Portugal)

Vladimir Zivkovic –

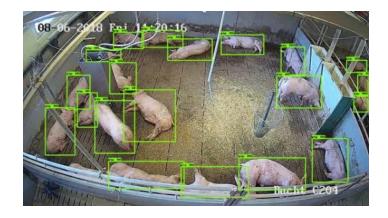
Animal Scientist (Institute for animal husbandry, Belgrade, Serbia)

Kirill Ivanov – PhD student (Dept of Comparative Biomedicine and Food Science, Padova, Italy)

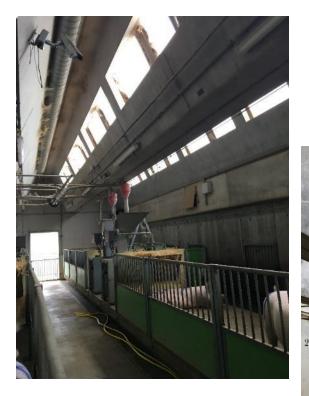
A Roadmap for assessing pigs behavior from video surveillance

Goal

Compare methods for detecting behaviours of *individual* pigs


- 2 pens with 12 castrated male pigs each
- 100 140 kg live weight
- 5 surveillance cameras

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper


Steps and challenges

- 1. Establishing ethogram & installing cameras
- 2. Selecting images with highest information content
- 3. Annotating images
- 4. Choosing and training the model
- 5. Evaluating model performance

Establishing ethogram & installing cameras

36 days x 13h (7:00 – 20:00) x 5 cameras = **3'055 hours of video** after preselection: **1'850 h of video** = 231.25 work days

Ethogram: catalogue of behaviours

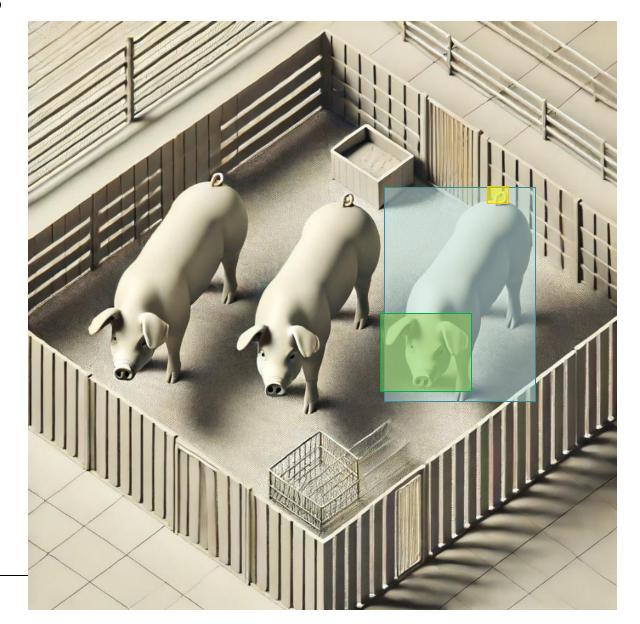
Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper

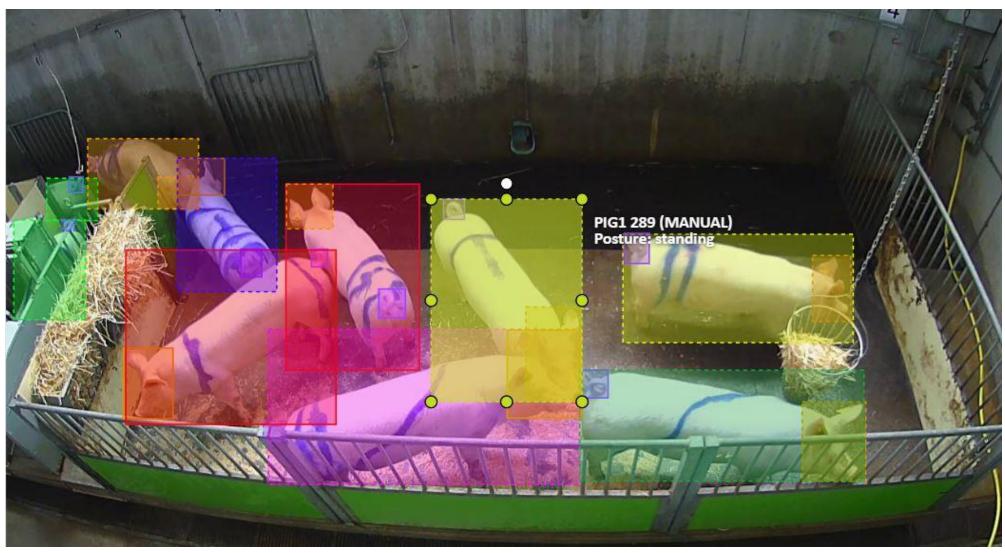
V Selecting information-rich images

Software Lightly

Select subset of images (frames) with the biggest impact on model accuracy – reduce redundancy

Embeddings: reduce dimensionality and cluster similar frames together




Software CVAT

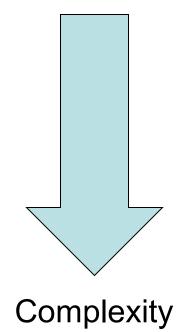
Label images with relevant information to be used in training models

- Posture of pig (standing/sitting/lying)
- Bounding boxes (BB) around pig, head, tail → 286 frames
- Segmentation + BB head & tail → 516 frames
 - 1 camera 800 frames 15'645 objects

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper

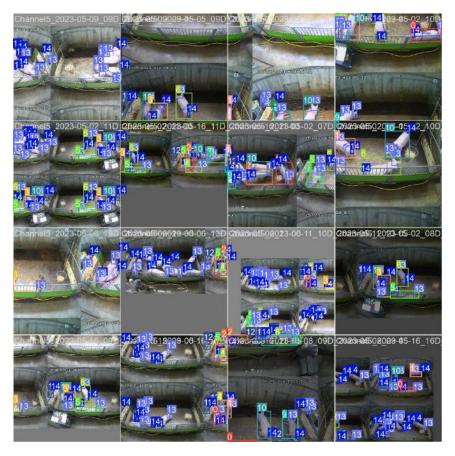
- Individual pigs
- Head
- Tail

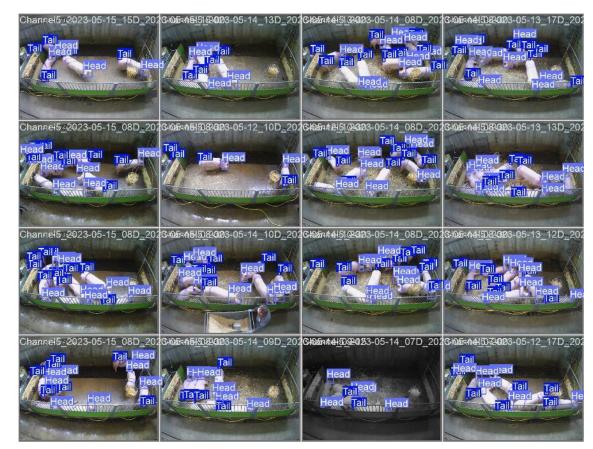

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper

Which model fits best to solve our problem?

Object detection?

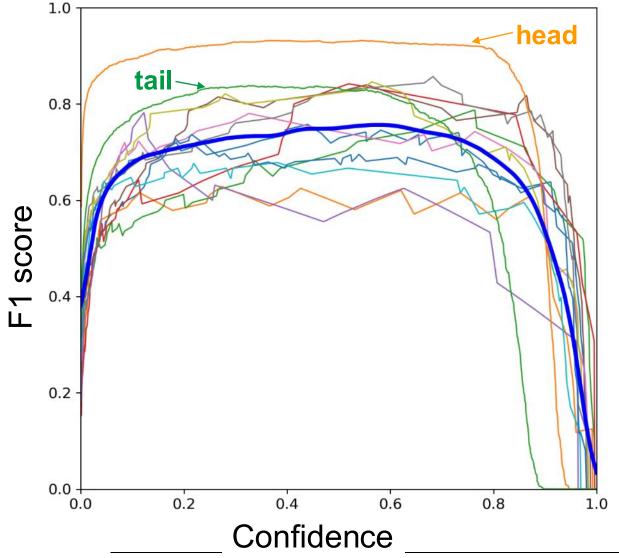
Key Points?


Action recognition?



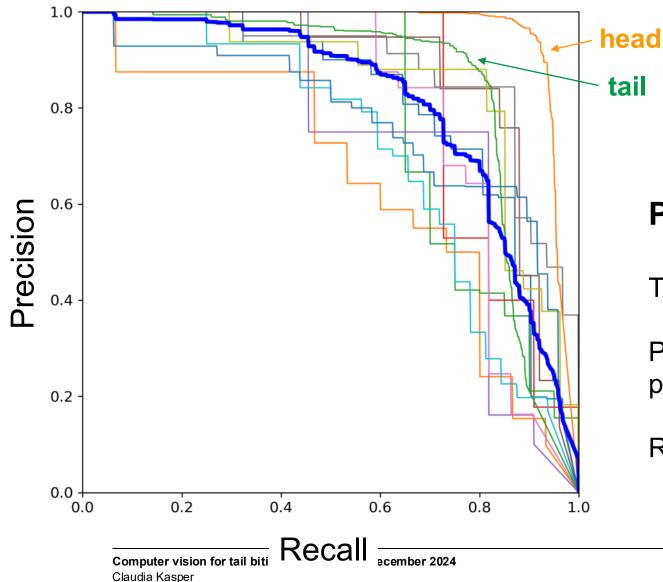
Training the model

Baseline model!


YOLO v8 medium – 286 frames, 4'872 objects (BB pig, head & tail only)

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper

Evaluating model performance

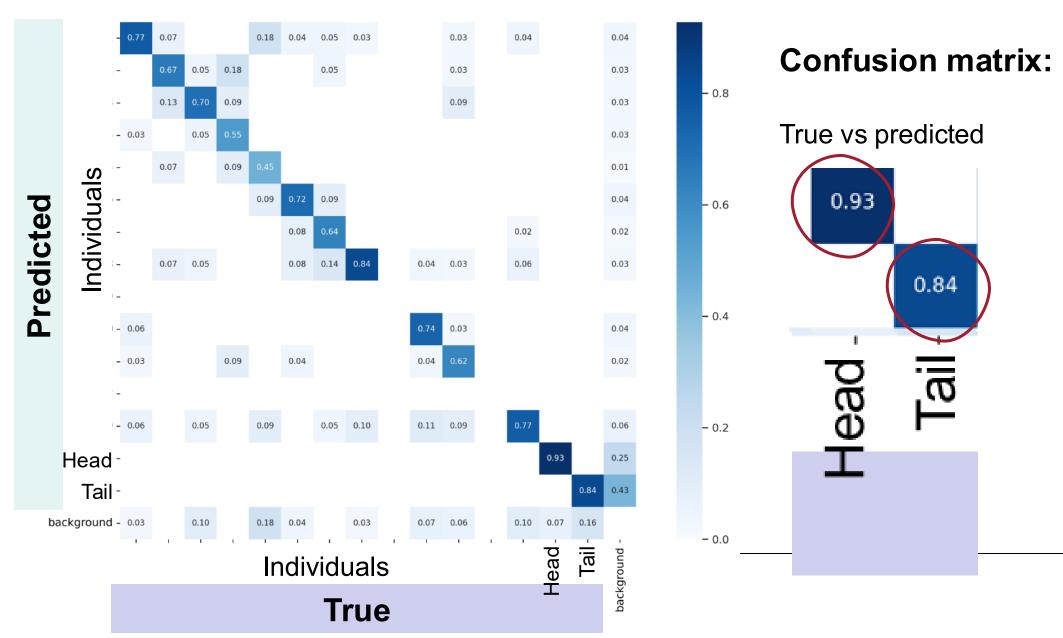

F1 confidence curve:

false positive and false negative (average of precision and recall)

against different confidence thresholds

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper

C Evaluating model performance

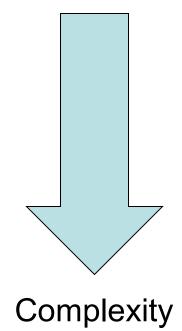

Precision-recall curve:

Trade-off between precision and recall

Precision: ability to not categorize negative as positive

Recall: ability to detect positive

C Evaluating model performance


Agroscope

Which model fits best to solve our problem?

Object detection?

Key Points?

Action recognition?

Data Labeling with keypoints

DeepLabCut (developed at EPFL)

<u>F</u> il	e <u>V</u> iew <u>H</u> elp		
		Engine py	ytorch
Mai	nage project Extract frames Label frames Create training dataset Train network Evaluate network Analyze videos Unsupervised ID Tracking (*) Create videos Extract outlier frames (*) Refine tracklets (*) Model Zoo Video editor (*)		
_	DeepLabCut - Optional Video Editor		
	Video Selection		
	mp4 Select videos Clear selection		
	Attributes		
	Downsample and rotate: Shorten video (trim):		
	Video height (aspect ratio fixed) 256 a Rotate video no Trim start (sec) 1		
	Rotation angle (deg) 0.00 🖨 Trim end (sec) 30 🖨		
			Downsample
			Rotate
≫			Trim
			Crop
	 + No pre-processing, no-code, good starting point - Does not rely on heuristics such as body models → Occluded points can't be tracked 		

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper

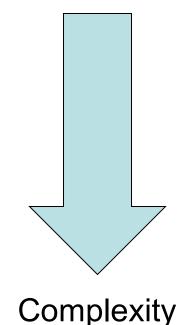
Comparing models (deep neural networks)

- with a minimum baseline keypoint configuration
- Resnet50 performs best

Param	HRNet W32 ImN	HRNet W32 AniQ	Resnet50 ImN	Resnet101 ImN
Train rmse_pcutoff	1.96	1.65	2.04	2.17
Train mAP	99.23	97.31	97.67	99.77
Train mAR	99.8	100	99.85	99.95
Train rmse_detections	1.97	1.61	1.99	2.19
Train rmse_detections_pcutoff	1.95	1.6	1.96	2.17
Test rmse	9.84	9.63	6.29	6.56
Test rmse_pcutoff	8.88	9.17	5.72	6.34
Test mAP	74.24	66.85	82.9	93.68
Test mAR	80	77	93.33	94.17
Test rmse_detections	9.68	22.47	6.2	6.56
Test rmse_detections_pcutoff	8.76	21.22	5.63	6.34

Key point selection

How many key points?


Keypoints	Minimum requirements (Baseline model)	Unitary test (with everything else fixed)
Ears	1	3 (EAR3P)
Eyes	0	2 (EYES2P)
Tail	1	-
Nose	1	2 (SNOUT2P)
Back	3	5 (BODY5P)

Which model fits best to solve our problem?

Object detection?

Key Points?

Action recognition?

Conclusion & next steps

- Obtained ok results with just 286 frames
- Training on the full set of available annotated frames promising

Next steps

- Transfer model to other cameras (different angles)
- Extract relative positions of heads and tails
- Infer behaviours using specialized software and define rules
- Compare the three methods (object detection key points action recognition)

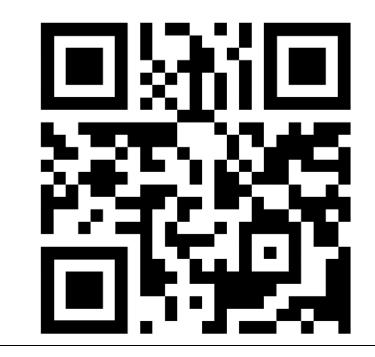
Agroscope

Challenges

- The right phenotype
 - Validity (welfare specialists needed)
- Translate ethogram to computer language
- Camera positioning
- Communication in interdisciplinary team
- Setting up cloud/server
- Getting DeepLabCut to work
- Individual tracking

[†] Thank you!

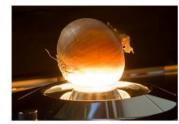
Experimental Farm:


- Guy Maïkoff
- Bertrand Egger
- Fabrice Sansonnens

COST Action CA22112 European Network on Livestock Phenomics

multidisciplinary, interconnected and inclusive community of experts in Livestock Phenomics

Computer vision for tail biting | SABRE-TP 5 December 2024 Claudia Kasper


Thank you for your attention

Claudia Kasper claudia.kasper@agroscope.admin.ch

Agroscope good food, healthy environment www.agroscope.admin.ch

