u^b Genomic analysis of hoof and leg conformation in Swiss dairy cattle identified a HYAL1-related recessive form of polysynovitis

Stefan Vasiljevic¹, Franz R. Seefried², Sarah Widmer², Naveen K. Kadri³, Alexander S. Leonard³, Qiongyu He³, Florian Besnard⁴, Aurélien Capitan⁴, Hubert Pausch³, Cord Drögemüller¹, Joana Jacinto^{1,4}

¹Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland

²Qualitas AG, Zug, Switzerland

³Institute of Agricultural Sciences, Animal Genomics, ETH Zürich, Switzerland

⁴Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France

⁵Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Switzerland

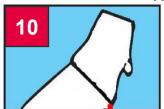
$u^{\scriptscriptstyle b}$ Background

- Traditional dairy breeding focused mainly on production traits, negatively impacting functional traits.
- Body conformation traits reflect important functional characteristics.
 - Poor hoof and leg conformation increases the risk of hoof lesions and lameness, a major welfare and economic issue in dairy cattle.
- Lameness is common in CH:
 - 14.8% of Swiss cows show clinical lameness
 - >80% of farms have at least one affected animal.

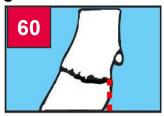
Aim

- 1. Estimate the additive heritability (h^2) of hoof and leg conformation traits in Swiss Holstein (HO) and Brown Swiss (BS) cattle populations
- Identify associated genomic regions using additive and non-additive GWAS based on whole genome sequenced level imputed SNV
- Detect functional candidate genes and candidate variants in associated genome regions
- Clinically characterize animals carrying recessive candidate variants

www.swissherdbook.ch

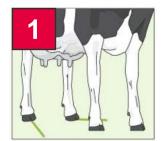


www.braunvieh.ch

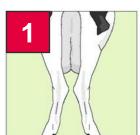

Hoof and leg conformation traits in HO

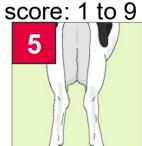
Heel depth (HDE)

millimeter: 10 to 60



Locomotion (LOC)


score: 1 to 9



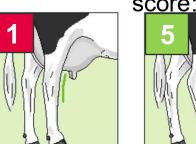
Rear leg rear view (RLR)

Foot angle (FAN)

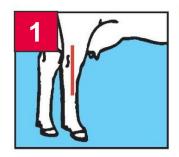
score: 1 to 9

Bone structure (BST)

Score: 1 to 9



Rear leg set (RLS)



$oldsymbol{u}^{\scriptscriptstyle b}$ Hoof and leg conformation traits in BS

Rear leg side view (RLV)

Score: 1 to 9

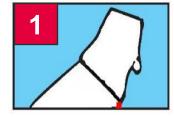
Foot angle (FAN)

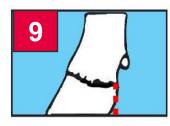
Score: 1 to 9



Hock quality (HQU)

Score: 1 to 9





Heel depth (HDE)

score: 1 to 9

u^b Overview: Genotype and Phenotype

Muumbar	Population					
Number	НО	BS				
Animal genotyped	87,806	52,202				
High density SNV panel	777,962	777,962				
whole genome sequenced level imputed SNV panel	37,471,032	26,455,603				
Records	1,141,329	1,132,160				
Animal with genotype and phenotype	21,353	15,724				

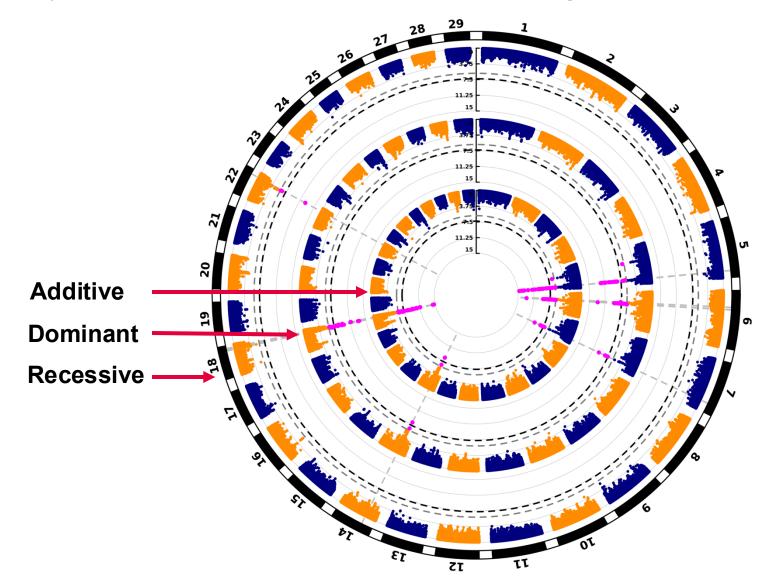
Estimated h² of hoof and leg conformation traits

Breed	Trait	Raw phenotype		Corrected	h² (SE)	
		Mean (SD)	Min–Max	Mean (SD)	Min–Max	
	BST	5.71 (1.26)	1–9	0.00 (1.14)	-4.82–3.84	0.28 (0.01)
	HDE	35.58 (5.20)	10–60*	0.00 (4.76)	-25.06–25.57	0.13 (0.008)
НО	FAN	5.46 (1.18)	1–9	0.00 (1.10)	-4.98–4.38	0.14 (0.008)
пО	LOC	5.62 (1.26)	1–9	0.00 (1.14)	-4.88–3.95	0.1 (0.007)
	RLR	5.73 (1.39)	1–9	0.00 (1.25)	-5.05–3.93	0.21 (0.009)
	RLS	5.12 (1.12)	1–9	0.00 (1.06)	-4.50–3.82	0.24 (0.009)
	HDE	5.40 (1.08)	1–9	0.00 (0.95)	-4.18–3.97	0.1 (0.009)
BS	FAN	5.34 (1.20)	1–9	0.00 (1.10)	-5.29–4.11	0.14 (0.01)
	HQU	5.40 (1.87)	1–9	0.00 (1.71)	-5.31–5.57	0.26 (0.01)
	RLV	4.86 (1.12)	1–9	0.00 (1.04)	-4.15–4.61	0.21 (0.01)

SD = standard deviation, Min = minimum, Max = maximum, h^2 = additive heritability, SE = standard error BST = bone structure, DHE = heel depth, FAN = foot angle, LOC = locomotion, RLR = rear leg rear view, RLS = rear leg set, HQU = hock quality, RLV = rear leg side view HO = Holstein, BS = Brown Swiss *measured in mm

7 1 . b

45 associated suggestive genomic regions


GWAS analyses with a subset of ~700k markers using GCTA

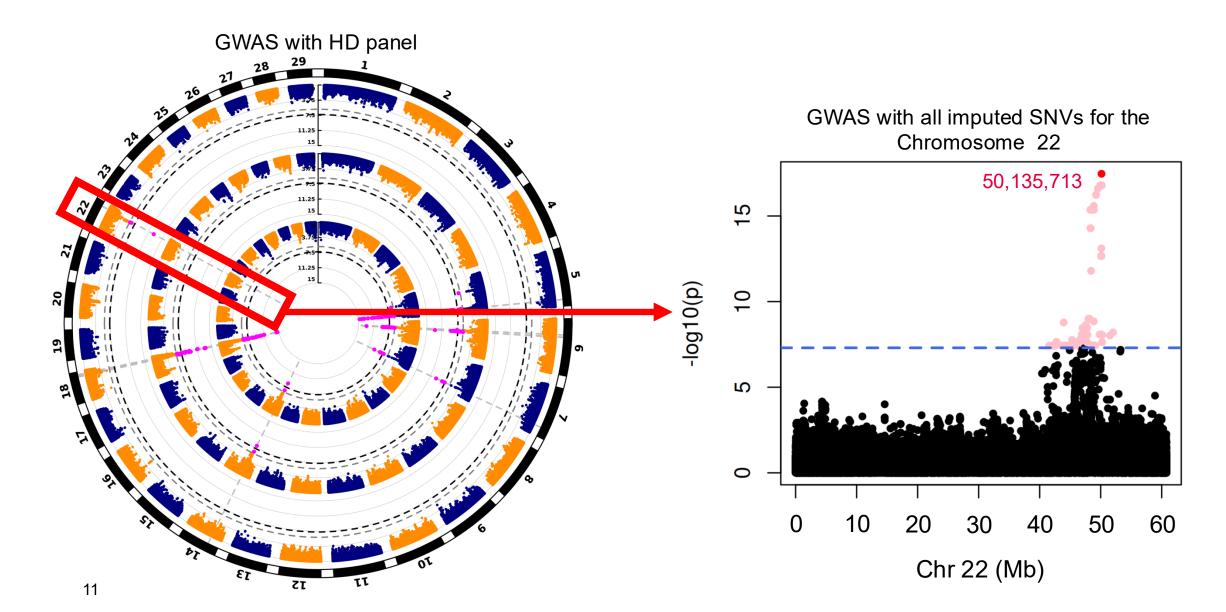
Threshold: $P \le 1 \times 10^{-6}$

Brood	Troit	Additive	Non-additive			
Breed	Trait	Additive	Dominant	Recessive		
	BST	5	5	1		
	FAN	1	2	1		
НО	HDE	1	1	0		
но	LOC	3	1	1		
	RLR	0	0	1		
	RLS	2	1	1		
	HDE	3	2	1		
BS	FAN	0	0	0		
БЗ	HQU	5	3	0		
	RLV	2	1	1		
То	tal	22	16	7		

u^b Example: GWAS results for BST in HO

Analyses with a subset of ~700k markers using GCTA

11, b


25 significant associated genomic regions

Whole genome sequencing SNV imputed panel using GCTA

Threshold: $P \le 5x10^{-8}$

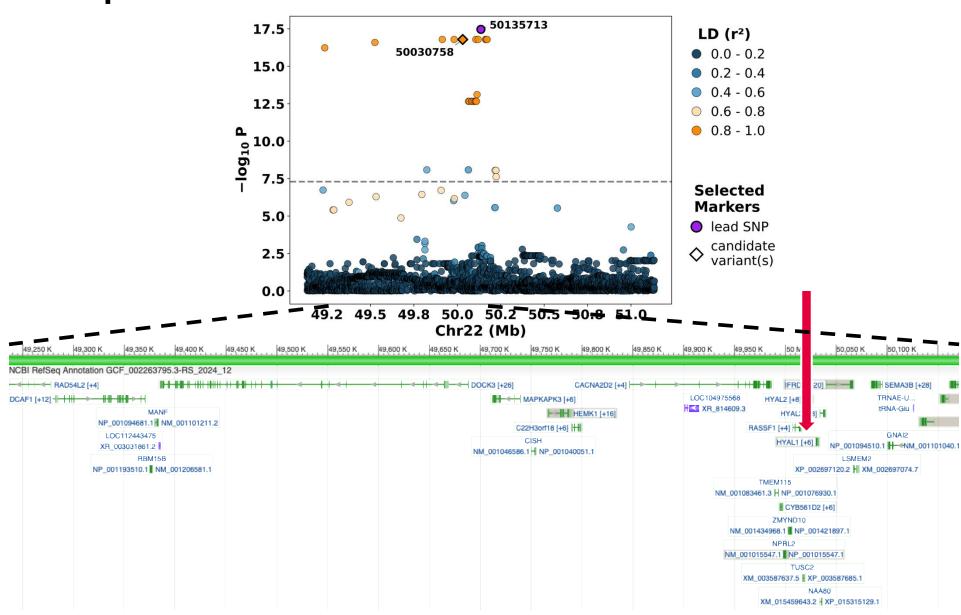
Breed	Trait	Additive	Non-additive		
Dieeu	Hall	Additive	Dominant	Recessive	
	BST	5	5	1	
	FAN	0	0	0	
НО	HDE	0	0	0	
ПО	LOC	2	1	1	
	RLR	0	0	0	
	RLS	0	0	0	
	HDE	2	2	0	
BS	FAN	0	0	0	
БЗ	HQU	4	2	0	
	RLV	0	0	0	
То	tal	13	10	2	

u^b Example: GWAS results for BST in HO

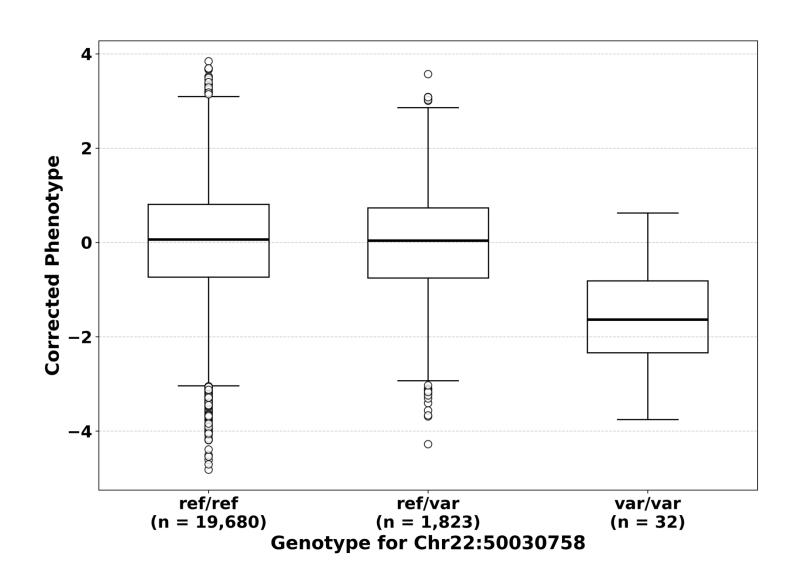
u^b 15 unique significant QTL

Whole genome sequencing SNV imputed panel using GCTA

Breed	Troit	Additive	Non-additive		
breed	Trait	Additive	Dominant	Recessive	
	BST	5	0	1	
	FAN	0	0	0	
но	HDE	0	0	0	
НО	LOC	2	0	0	
	RLR	0	0	0	
	RLS	0	0	0	
	HDE	2	0	0	
BS	FAN	0	0	0	
БЗ	HQU	4	1	0	
	RLV	0	0	0	
То	tal	13	1	1	


$oldsymbol{u}^{\scriptscriptstyle b}$ Positional candidate genes for the 15 QTL

Bre	ed T	rait	Model	Chr	QTL interval	Candidate gene					
				5	104,547,532-106,547,170	NTF3, KCNA1, NDUFA9, FGF6, FGF23, CCND2					
				6	36,048,590-38,048,179	PIGY, PKD2, SPP1, MEPE, IBSP					
			Additive	7	89,812,839-91,811,827	ADGRV1					
	R	BST		14	23,325,792-25,325,229	PLAG1, BPNT2					
Н		_		18	56,574,893-58,574,848	POLD1, ETFB, MIR99B, MIR125A, PPP2R1A					
			Recessive	22	49,135,960-51,134,158	HYAL1, TRAIP, GMPPB, DAG1, AMT, RHOA, QARS1, MIR191, NDUFAF3, SLC25A20					
	LOC Additive 5 107,761,169-109,760,788 CACNA1C, IL17RA, ADA2, ATP6V1E1, PEX26, TUBA8, SOX		CACNA1C, IL17RA, ADA2, ATP6V1E1, PEX26, TUBA8, SOX10								
				11	43,806,510-45,806,350	EDAR, RANBP2, SLC5A7					
				13	60,329,758-62,328,857	CSNK2A1, RBCK1, ID1, BCL2L1, POFUT1, ASXL1, DNMT3B					
	Н	HDE	Additive	25	484,002-2,483,588	PIGQ, STUB1, GNPTG, CLCN7, TELO2, IFT140, MRPS34, IGFALS, GFER, TSC2, PKD1, ABCA3, CCNF, TBC1D24, KREMEN2					
				3	117,733,467-119,733,028	TWIST2, HDAC4, NDUFA10					
В	s			18	34,316,206-36,314,919	CBFB, MIR328, CTCF, ACD, LCAT, PRMT7, CDH3, CDH1					
	н	IQU	Additive	25	226,786-2,226,229	AXIN1, PIGQ, STUB1, GNPTG, CLCN7, TELO2, IFT140, MRPS34, IGFALS, GFER, TSC2, PKD1, ABCA3, CCNF, TBC1D24					
				26	22,249,367-24,248,244	BTRC, POLL, DPCD, FBXW4, FGF8, GBF1, NFKB2, MIR146B, SUFU, TRIM8, CYP17A1, CNNM2, NT5C2					
			Dominant	6	87,208,448-89,208,308	ADAMTS3, ALB, CXCL8, PPBP, PF4					


u^b 17 candidate variants

Breed	Trait	Model	Chr	Position (bp)	MAF	R ²	Effect size	SE	p-value	Gene	Variant type	
	BST	Recessive	22	50,030,758	0.043	0.991	-1.594	0.187	1.62×10 ⁻¹⁷	HYAL1	Stop gained	
но			5	108,760,988	0.31	1	0.089	0.015	5.42×10 ⁻⁹	CACNA1C	Intronic	
	LOC	Additive	11	44,828,627	0.343	0.944	0.096	0.012	7.31×10 ⁻¹⁵	GCC2	Missense	
			13	61,320,050	0.117	0.995	-0.115	0.020	1.99×10 ⁻⁸	TPX2	Synonymous	
	HDE	Additive		1,171,241	0.453	0.951	-0.091	0.015	1.55×10 ⁻⁹	TELO2	Upstream	
	IIDL	_ Additive	25	1,340,769	0.45	0.908	-0.097	0.015	1.55×10 ⁻¹⁰	MAPK8IP3	Intronic	
			25	1,690,471	0.464	0.959	-0.098	0.015	1.15×10 ⁻¹⁰	TRAF7	Upstream	
				1,836,217	0.466	0.945	-0.096	0.015	2.04×10 ⁻¹⁰	ABCA3	Upstream	
			3	118,271,945	0.348	0.919	-0.171	0.033	3.12×10 ⁻⁷	HDAC4	Intronic	
				118,888,292	0.348	0.975	-0.181	0.033	5.38×10 ⁻⁸	NDUFA10	Intronic	
BS	HQU Additi			18	35,124,569	0.456	0.794	0.175	0.032	6.7×10 ⁻⁸	RIPOR1	Frameshift
		Additive	25	1,148,147	0.295	0.978	0.174	0.033	9.85×10 ⁻⁸	CLCN7	Synonymous	
				22,262,227	0.272	0.845	-0.191	0.035	5.76×10 ⁻⁸	BTRC	Intronic	
				22,433,281	0.273	0.851	-0.194	0.035	3.81×10 ⁻⁸	FBXW4	Intronic	
			26	22,503,920	0.273	0.852	-0.2	0.035	1.44×10 ⁻⁸	FGF8	Missense	
				23,248,278	0.303	1	-0.2	0.034	3.24×10 ⁻⁹	SUFU	Downstream	
		Dominant	6	88,208,422	0.154	1	-0.297	0.045	5.42×10 ⁻¹¹	ANKRD17	Intronic	

u^b Example: non-additive QTL for BST in HO

Recessive HYAL1 variant for BST in HO

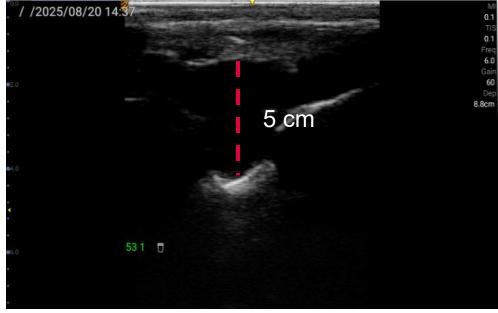
u^b HYAL1 as functional candidate gene

- Function
 - Produces hyaluronidase-1, an enzyme that breaks down hyaluronic acid
- Effect
 - Mucopolysaccharidosis Type IX in humans
 - soft tissue masses, joint swelling, cartilage abnormalities, and reduced bone quality
- Predict effect on cattle
 - A stop-gained variant may disrupt hyaluronic acid breakdown, leading to weaker cartilage, altered hoof/bone structure and accumulation of hyaluronic acid

Imundo et al. (2011)

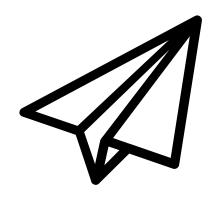
Polysynovitis in HYAL1 homozygous HO cattle

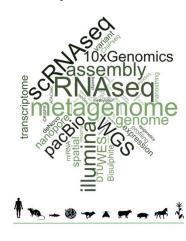
- On-farm Examination of 7 HO females
 - Three heifers 7 mo. old
 - Four cows 3.5 y. old


Clinical findings

- hock enlargement
- Joints soft, non-warm, and non-painful
- Lameness in one cow (score 3/5)

Ultrasonography

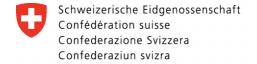

- abundant anechogenic content in affected joints
- Clinical Diagnosis
 - Polysynovitis
 (mostly in hindlimbs and 1 cow in the forelimbs)


$u^{\scriptscriptstyle b}$ Take home message

- First high-resolution study of the genetic architecture of hoof and leg conformation traits in Swiss dairy cattle.
- Traits show a polygenic background, driven by many small-effect loci.
- Non-additive GWAS models reveal important large-effect recessive variants (e.g., *HYAL1*).
 - Monitoring deleterious alleles in breeding populations.

Interfaculty Bioinformatics Unit

Thank you!



Qualitas.

Federal Office for Agriculture FOAG

H. WILHELM SCHAUMANN STIFTUNG