SABRE-TP 4.12.2025

Genetic Markers for male sub-fertility in Brown Swiss cattle – effects on semen quality and non return rate

- Swissgenetics: evaluation of data from semen lab and field use
 - Silvia Wegmann, Dr. sc. tech. ETH
 - Matthias Risch, MSc ETH Agrarwissenschaften

Introduction

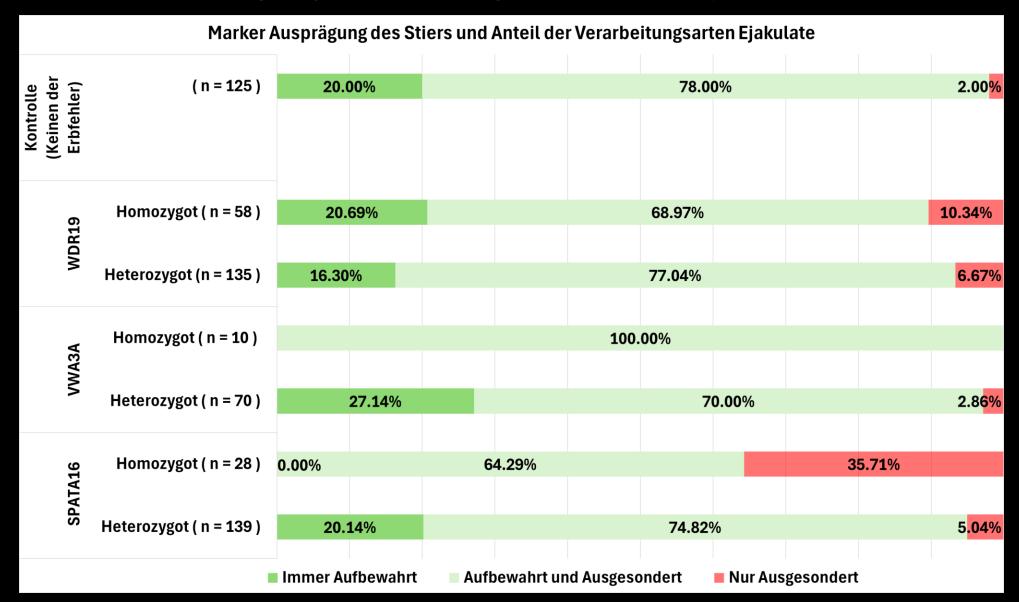
- Genetic variants for male sub-fertility in Brown Swiss cattle
 - 2 projects at ETH Zurich, Prof. Dr. Hubert Pausch:
 - 6 markers for male sub-fertility genotyped on Swiss Custom-Chip
 - Markers are not published yet, Al studs have access to results
- Swissgenetics how to use markers?

Frequency of genotyped defects (2020-2025

Marker	Frequency
WDR19_ARS	.26
DNAH3	.02
QRICH2	.02
SPATA16	.24
VWA3A	.11
ENSBTAP	.01

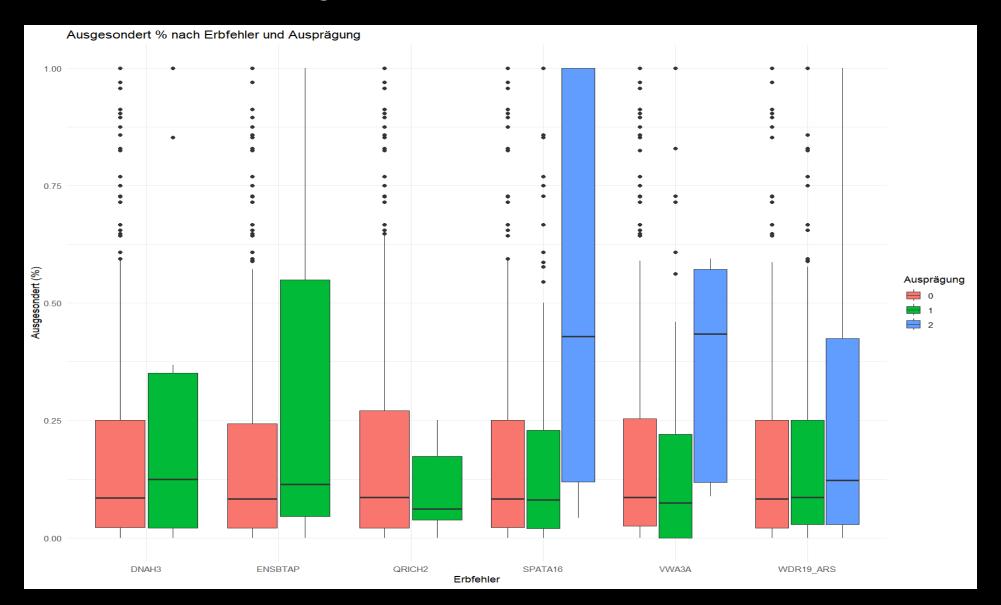
Alpenbitter:

- WDR19 homozygous
- Slow producer: many ejaculates < 100 units
- Units sold but NRR56 of conventional semen was 8% lower than average Brown Swiss

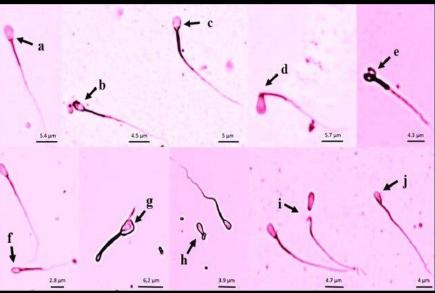

Evaluation of sperm quality and sire conception rates

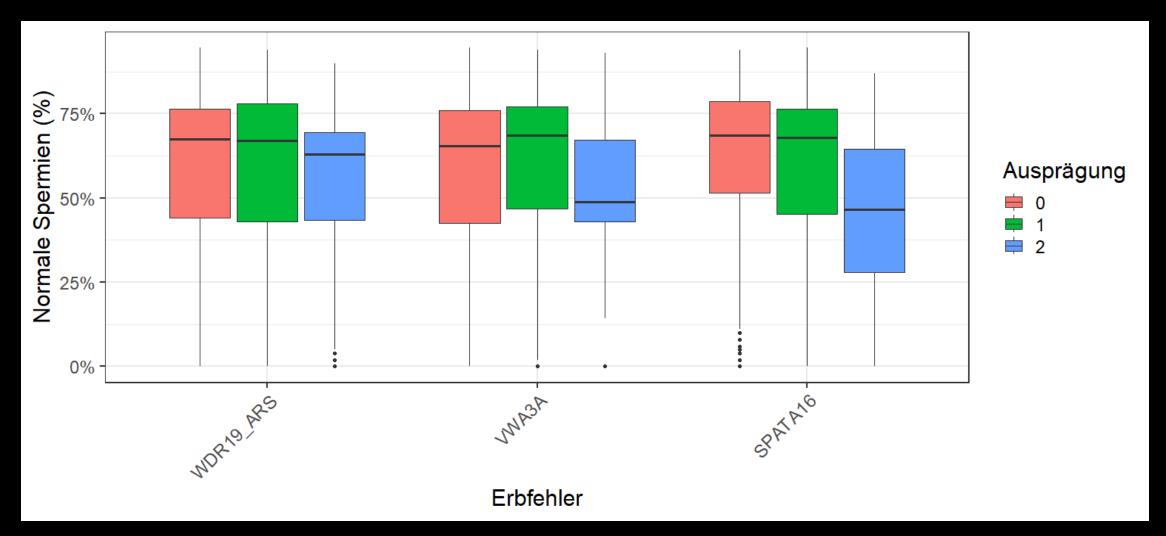
Big problems with Brown Swiss bulls in 2024 – many not producing/stop after 1500 units...

- Very "quick and dirty approach" to be able to decide on young bulls stop buying homozygous bulls?
- List of genetic markers from Qualitas
 - All new bulls have information
 - Older bulls/Import bulls are retyped with 150K-Chip
- Semen lab data :
 - Percentage of ejaculates that meet quality standard (January 2018 May 2025)
 - Sperm morphology date (May 2009 May 2025)
- Field data:
 - Non-return-Rate 56 days, highest rate per bull (rolling evaluation, 12 months data)



Part of Bulls (by marker) with ejaculates: all frozen; partly rejected, partly frozen; all rejected


Bulls: % of ejaculates below limit per bull



Sperm morphology

Abkürzung	Haupt/	Blom (1972)
	Nebend	
Kopfformen	HD	HD - pear-shaped defect b)
Vakuolen_etc	HD	HD - Diadem defect
DNA-Kond.	HD	
knob	HD	HD - knobbed acrosome
Dag	HD	HD - strongly coiled or folded tail
Schnörkel	HD	
MS_gekerbt	HD	HD - Corkscrew defect
ZPI_prox.	HD	HD - proximal doplet
Unterentwickelt	HD	HD - underdeveloped
Micro-macroenc.	ND	ND - small normal heads
lose_Köpfe	ND	ND - free normal heads
Akrosomen Ablösung	ND	ND - detached acrosome membranes
Abax_Schw.	ND	ND - abaxial implantation
Schlingen	ND	ND - terminal coiled tail
ZPI_dist.	ND	ND - distal droplet
Doppelform	ND	HD - double forms

Sperm morphology: % of normal sperms per ejaculate

Non return rate: WDR19 and SPATA16

What's next?

- More research needed:
 - What causes homozygous bulls to produce normally or not at all?
 - When do problems start? Very early later on? Why? Pathology?
 - Evaluation of Non-return-rates per batch
- Handling in Swissgenetic's Brown Swiss program:
 - Swissgenetics still buys homozygous bulls (WDR19, SPATA16)
 - Frequency in youngest bull calves lower (lines, coincidence?)
 - If full brothers of similar value available, buy free or heterozygous calf
 - Long term: decrease frequency